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Abstract

We present a capacity constrained network flow optimization approach for
finding evacuation paths, flows and schedules so as to maximize the total
evacuees for short notice evacuation planning (SNEP). Due to dynamic na-
ture of this optimization problem, we first construct a time-expanded network
that expands the static network over the planning horizon for every time in-
terval. Since the resulting evacuation networks become extremely large to
solve, we have developed Evacuation Scheduling Algorithm (ESA) to expe-
dite the solution process. ESA utilizes Dijkstra’s algorithm for finding the
evacuation paths and a greedy algorithm for finding the maximum flow of
each path and the schedule to execute the flow for each time interval. We
show that the complexity of ESA is O(|Nc| ·n2) +O(|Nc| ·m ·T ). Numerical
experiments show a tremendous advantage of ESA over an exact algorithm
(CCEP) in computation time by running up to 41,682 faster than CCEP. In
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while ESA converged to a solution in less than 0.03 seconds.
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1. Introduction

Hurricanes are cyclones that develop over the warm tropical oceans and
have a sustained wind speed over 74 miles per hour. Hurricanes typically
produce dangerous winds, torrential rains and flooding. All of them may
result in tremendous property damage and loss of life in coastal populations.
Recent hurricanes such as Ike (See Figure 1(a)), Gustav, Rita, and Katrina
have given real situations to local and federal agencies for testing their ability
in evacuating and safely relocating their residents. The massive traffic con-
gestion (See Figure 1(b)) resulting from simultaneous evacuation of several
million residents coupled with significant shortages of fuel and other basic
necessities once again underscored the importance of a well-planned strategy
in effectively evacuating large metropolitan areas.

(a) A Hurricane Ike Path Trajectory cap-
tured from weather.com on September 11,
2008

(b) An Evacuation Traffic

Figure 1: Hurricane Evacuation

The evacuation route planning is a complex problem which has several
aspects. One is analyzing the effects of different behavioral and managerial
factors on evacuation (Perry, 1985; Vogt and Sorensen, 1992; Dow and Cut-
ter, 1998; Drabek, 1999). Defining evacuation zones (Sorensen et al., 1992) is
another aspect of the problem. These zones should be established before the
disaster happens. Furthermore, shelters and safe places should be allocated
(Sherali et al., 1991) and notified to evacuees in advance to reduce evacua-
tion related risks and costs. One of the key aspects of the problem, which
is investigated in this paper, is to determine the evacuation paths, flows and
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schedules in an efficient way. Depending on the types of evacuation networks
(Smith, 1991; Southworth, 1991), two main approaches have been identified
in the literature to develop mathematical formulation for evacuation route
planning. The first one is based on the static network while the second one is
based on the time-expanded network that considers network flow over time.
In Cova and Johnson (2003), the routing plans for a regional evacuation are
provided on a static network while minimizing the crossing conflicts at inter-
sections because they believe that most traffic delays in regional evacuations
occur at intersections. However, their approach does not provide the evac-
uation schedule, i.e., how many times a specific route can be used during
evacuation and when to evacuate. Lu et al. (2005) also use the static net-
work to avoid the computational burden of the time-expanded network. They
present a heuristic iterative algorithm Capacity Constrained Route Planner
(CCRP) that produces a sub-optimal solution for the evacuation planning
problem. Based on the static network, CCRP finds the minimum time hori-
zon that ensures 100% evacuation. However, resulting evacuation paths are
not necessarily useful in practice because the evacuation paths from CCRP
allow intersection nodes to hold flow for some periods of time. In practice,
intersection nodes should not hold flow.

Time-expanded networks more realistically describe the dynamic evacu-
ation problem compared to the static mode. However, the resulting size of
the network is often too large to solve in a reasonable time. In Hamacher
and Tjandra (2002), the evacuation problem is formulated as a network flow
optimization model. But its slow solution time is a major drawback of their
approach for real size evacuation networks. Ford and Fulkerson (1958, 1962)
first proposed a linear programming model for the maximal dynamic network
flow problem with one source node and one destination node. But it was not
designed to find the paths. Therefore, they proposed a temporally repeated
flows algorithm that finds an optimal solution for the maximal dynamic net-
work flow problem. The algorithm provides a set of paths and corresponding
flows that maximize the total output flow from a single source node in a
given period of time. This algorithm can be expanded to a network with
multiple source nodes and destination nodes. However, it is not applicable
to networks with limited amounts of supplies in the source nodes and limited
capacities in the destination nodes such as in evacuation networks (Hoppe,
1995).

Another approach is to formulate the evacuation planning problem as a
transshipment problem (Hoppe and Tardos, 2000) or more specifically as a
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dynamic transshipment problem (Herer and Tzur, 2001). However, in the
dynamic transshipment problem, a specific demand in each time period for
each destination node is required, which is different than the evacuation
problems.

In this paper, we formulate the evacuation problem as a capacitated net-
work flow problem on the time-expanded network. We determine the evacua-
tion paths, their flows, and evacuation schedule (when to evacuate with how
much flow via which path). We first attempt to develop an exact solution
approach. However, evacuation networks are typically large. If we add the
time component to the optimization problem, the corresponding model be-
comes extremely large scale that there are no known polynomial algorithms
for solving such problems. Therefore, a heuristic algorithm is also developed
for solving the evacuation problem that can generate high-quality solutions
for large-scale evacuation network problems.

Our goal is to develop a decision making tool that deals with assigning
evacuation routes and schedules to evacuees in different evacuation areas. We
assume that decision makers have complete information on the number of
evacuees in each area, the capacity and topology of transportation networks,
and the path forecasts of approaching hurricanes. Based on the available
information, we facilitate the evacuation process by providing clear temporal
and spatial schedules and routes to evacuation vehicles by utilizing network
optimization techniques.

The rest of the paper is organized as follows. Section 2 describes the
evacuation planning problem, mathematical notation, and the network op-
timization formulations of the problem. Since the traditional maximal dy-
namic network flow formulation is designed to find optimal flows, it does not
fit well for our evacuation planning problem. Therefore, we formulate SNEP
as a capacitated network flow problem (CNFP) in Section 2.3 that deter-
mines optimal evacuation path(s), flow(s), and schedule(s) for each centroid
in the network. In Section 3, Capacity Constrained Evacuation Planning
algorithm (CCEP) is proposed to find an optimal solution to our problem.
Since CCEP is computationally expensive for large-scale problems, a heuris-
tic solution approach called Evacuation Scheduling Algorithm is developed
in Section 4. Our approach is based on the shortest path algorithm for path
generation and a greedy algorithm for flow generation to facilitate the so-
lution time. In Section 5, numerical experiments are conducted for testing
the performance of the heuristic algorithm on a number of different cases.
Finally, we conclude our paper with a short summary in Section 6.
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2. Methodology

2.1. Notation

In this section, we start by introducing mathematical notation used in
this paper (see Table 1). We first consider our problem on a static network
G = (N ,A) that represents the transportation network in the area of in-
terest. Because of the nature of the evacuation problem, we divide the set

Table 1: Static network notation

Notation Description

Nd set of all impact nodes
NS set of all safe nodes
NC set of centroids, NC ⊂ Nd
N = {Nd ∪NS} set of all nodes
A set of all arcs in the network
ti impact time at node i
si initial number of evacuation vehicles located at node i
ui maximum number of evacuation vehicles which can be

located at node i per time period
~tij travel time on the connecting road between node i and

node j, (~tii = 1)
ϑij maximum number of evacuation vehicles which can enter

into arc (i, j) per time period
Node i ∈ N physical location including impact nodes and safe nodes
Arc (i, j) ∈ A connecting road between node i and node j

of nodes N into two subsets: Nd (impact nodes) and NS (safe nodes). The
former includes all the nodes that are declared as evacuation zones. The lat-
ter contains all the safe nodes to which evacuees are trying to reach during
the evacuation. Impact nodes are further classified as centroids (NC) and
intersections. Centroids are the nodes with positive supplies whereas inter-
sections do not have supplies. Evacuees from one centroid can pass through
another centroid, but they are not allowed to stay in any visiting centroids
during evacuation. Furthermore, we are given one parameter, ti, to denote
impact time of node i. Impact time is defined as the amount of time that is
available for evacuees in node i to evacuate until the impact of the projected
hurricane is made to the area. By definition, the impact time for a safe node
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is equal to infinity because safe nodes are not supposed to be affected by a
hurricane. Other parameters are self-explanatory and definitions are given
in Table 1.

A few assumptions are made for our model formulation. Since our goal is
to find a solution that works well for the worst case scenario, the transit time
is estimated based on the peak rush hour travel time on a major highway,
which is a conservative estimate of the travel time. A set of impact nodes
and a set of safe nodes are given to the model a priori. The impact nodes
in the network are categorized into different regions based on their priorities
for evacuation. The number of evacuation regions depends on the number of
nodes in the network as well as the network size.

2.2. Dynamic Network Construction

Due to dynamic nature of this optimization problem, we first construct
a dynamic network (or time-expanded network) that expands the static net-
work over the planning horizon for every time interval. We first explain how
traditional time-expanded networks are constructed. Then a more refined
network construction approach is described to construct smaller networks.

2.2.1. Traditional time-expanded network construction

Time-expanded networks were introduced by Ford and Fulkerson (Ford
and Fulkerson, 1958) to maximize the flow from the source node to the sink
node in a network within a given time period T . In this approach, all the
nodes and the arcs of the static network are duplicated at each time period.
The resulting arcs are called movement arcs AM . There are also holdover arcs
AH for each node which hold the flow of that node for one time period. Figure
2 shows a small example of a static network to explain the construction of the
corresponding time-expanded network. We slightly modify the mathematical
notation for constructing the time-expanded network. Let Gτ = (N τ ,Aτ )
represent a time-expanded network of a static network G = (N ,A) over a
given evacuation planning horizon T . Where, N τ = {it|i ∈ N ; t = 0, . . . , T −
1} is the set of nodes in the time-expanded network, AM = {(it, jt̄)|(i, j) ∈
A; t̄ = t + ~tij ≤ T ; t = 0, . . . , T − 1} is the set of all movement arcs while
AH = {(it, it+1)|i ∈ N ; t = 0, . . . , T − 2} is the set of all holdover arcs.
Therefore, the set of arcs in the time-expanded network is the union of the
two arc sets, i.e., Aτ = {AM ∪AH}. In addition, the capacity of an arc (a, b),
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Figure 2: Static network G = (N ,A)

Ūa,b, in the time-expanded network is

Ūab =

{
ϑij, if (a, b) ∈ AM and a = it, b = jt+~tij for some t ∈ {0, . . . , T − 1}
ui, if (a, b) ∈ AH and a = it, b = it+1 for some t ∈ {0, . . . , T − 2}

Note that the flow of an arc (i, j) is bounded by its own arc capacity ϑij if
it is a movement arc at node i at time t. If the arc is a holdover arc, it is
just an imaginary arc that represents the supply of the node from time t to
t + 1. Therefore, the flow of such an arc (it, it+1) is bounded by either its
supply (if it is a centroid) or the capacity (for a safe node) at node i at time
t, ui. Note that we assume zero capacity for any nodes that are not either a
source (or starting) node or a destination node, i.e., an intersection node is
not allowed to hold any supplies from other impact nodes.

2.2.2. Reduced network construction

In order to minimize unnecessary computational burden, we take the
following steps to a reduced version of the traditional time-expanded network.
We first add two imaginary nodes J∗ (Super-safe node) and J ′ (Unsafe node)
to Gτ . Then, each safe node iT−1, ∀i ∈ NS, in Gτ is connected to node J∗

through the arc (iT−1, J
∗), with capacity ŪiT−1,J∗ = ui, and each centroid

i0, ∀i ∈ NC , is connected to node J ′ through arc (i0, J
′), with capacity

Ūi0,J ′ = si. The Super-safe node is assumed to be the final destination for
all the evacuees, while Unsafe node is considered as a shelter location for
evacuees who could not evacuate for various reasons. Note that we use J∗ in
the static network as its final destination for path generation. Thus, all safe
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nodes, NS, are connected to J∗ in G.

Figure 3: A modified time-expanded network construction Gτ = (N τ ,Aτ )

In practice, our evacuation network is smaller than the traditional net-
work. Since evacuees have ti time to evacuate, some nodes and arcs should
be omitted in the network construction; (1) node it, ∀i ∈ Nd, such that
t ≥ ti, (2) arcs (it, jt+~tij) such that t + ~tij ≥ tj, and (3) arcs (it, jt+~tij)
such that t ≥ ti. Furthermore, since the intersection nodes do not hold any
population, holdover arcs are not included if they are associated with an in-
tersection node. An example of our proposed time-expanded network with
two imaginary Super-safe and Unsafe nodes are depicted in Figure 3.

2.3. Capacitated Network Flow Problem (CNFP) Formulation

Our primary optimization model can be formulated as a capacitated net-
work flow problem that sends flows from a set of origin locations to a set of
destinations while sharing the capacity of the arcs with other paths. Note
that each centroid is allowed to have multiple paths.

2.3.1. Evacuation prioritization for centroids

Suppose that we have R regions in the network each of which consists of
a subset of impact nodes. Each centroid in region r ∈ {1, · · · , R} has one
or more evacuation paths. We define ηr as the total number of centroids in
region r. Parameter wr is defined as the weight of region r. The concept of
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region weights is linked to the priority of the regions for evacuation. There
are several factors which affect this priority such as distance of the region
from the center of hurricane, flood elevation, and population density. We
first assign the region numbers based on this priority, i.e. the region with
the lowest region number will have the highest priority for evacuation. In
addition, we normalize the weights of the regions so that the summation of
all the weights equals one. The formulation that embraces both the logic of
prioritization and normalization is as follow

wr =
R− r + 1

R(R + 1)/2
, r ∈ {1, · · · , R}. (2.1)

Furthermore, we impose the normalized weights not only for each region,
but also for each centroid in each region. This further normalization is ob-
tained by including the number of centroids in each region into the above
formulation. For each region r, the following new formulation calculates the
weight for its centroids

ŵi =
wr∑R

j=1(wj · ηj)
, ∀i ∈ Nr ⊆ NC and NC =

R⋃
r=1

Nr, (2.2)

whereNr is a set of centroids that belong to region r. Note that equation (2.2)
implies that all centroids in one region has the same weight (i.e., evacuation
priority).

2.3.2. Mathematical Model

Our decision variables to the optimization model are xitjk, ξiJ ′ , and yijk,
and they are defined as:

xitjk = The number of evacuation vehicles leaving node i to node j at
time t using path k,

ξiJ ′ = The number of evacuation vehicles leaving node i to node J ′,
yijk = 1, if arc (i, j) belongs to the path k; 0, otherwise.

In addition to notation defined in Table 1, we introduce δi as a set of

paths originating from centroid i, ∀i ∈ NC , and subsequently Ω =
⋃
i∈Nc

δi

as total outgoing paths from all centroids. Our objective is to maximize the
total number of evacuation vehicles (or flow) for all centroids from the R
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regions to safe destinations. Depending on the urgency of the evacuation,
each region is assigned with a different priority weight. If a region r needs
to be evacuated first, the highest weight will be assigned to the centroids in
the region. Therefore, our objective function is defined as

Maximize zcnfp =
∑
i∈NC

∑
k∈δi

∑
j|(i0,j0+~tij )∈Aτ

ŵi · xi0jk (2.3)

This objective function is to maximize the total weighted outgoing flows
from all centroids at time zero. In reality, some evacuees will depart a centroid
at time zero and others will evacuate based on their schedule. The former
follows the movement arcs while the latter follows the hold-over arcs to the
next time interval. Therefore, all evacuees will leave the centroids at time
zero in our time-expanded evacuation network.

The next set of constraints are the flow balance equations:∑
k∈δi

∑
j|(it,jt+~tij )∈Aτ

xitjk + ξiJ ′ = si, ∀i ∈ NC , t = 0, (2.4)

∑
k∈δi

∑
j|(it,jt+~tij )∈Aτ

xitjk = 0, ∀i ∈ N \ NC , t = 0, (2.5)

∑
j|(it,jt+~tij )∈Aτ

xitjk −
∑

j|(jt−~tji ,it)∈A
τ

xj(t−~tji)ik = 0, ∀i ∈ N , t ∈ {1, . . . , T − 1},

,∀k ∈ Ω (2.6)∑
k∈Ω

∑
i∈Ns

xitJ∗k +
∑
i∈NC

ξiJ ′ −
∑
i∈NC

si = 0, t = T − 1. (2.7)

Constraint 2.4 ensures that at time 0, all evacuees at each centroid are
either sent to the intersection nodes or to the unsafe node, J ′. Constraint 2.5
states that the total outgoing flow from intersection nodes is equal to zero
because they do not hold evacuees. Constraint 2.6 guarantees that the total
incoming flow to node i at each time period per evacuation path is equal to
the total outgoing flow from the same node at the same time period on the
same path. Finally, Constraint 2.7 satisfies the conservation of flow, i.e., all
evacuees eventually either reach the super-safe node or they are sent to the
unsafe node. However, in the objective function, the goal is to maximize the
number of evacuees who can be safely evacuated to the super-safe node.
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We add a bundle constraint for the movement arcs and the hold-over arcs
to the model:∑

k∈Ω

xitjk ≤ Ūit,jt+~tij ,∀(it, jt+~tij) ∈ {A
τ ∪ {(iT−1, J

∗)|i ∈ NS}},

t ∈ {0, . . . , T − 1}. (2.8)

The path generation constraints are defined as:∑
j|(i,j)∈A

yijk −
∑

j|(j,i)∈A

yjik = 1, ∀i ∈ NC , ∀k ∈ δi, (2.9)

∑
j|(i,j)∈A

yijk −
∑

j|(j,i)∈A

yjik = 0, ∀i ∈ N ,∀k ∈ Ω, if i 6= source(k), (2.10)

∑
j|(i,j)∈A

yijk −
∑

j|(j,i)∈A

yjik = −1, ∀k ∈ Ω, i = J∗. (2.11)

These constraints guarantee that flow of each path starts form its ori-
gin, continues along the path, and eventually ends at its destination. The
constraint

xitjk ≤ ϑij · yijk, ∀(i, j) ∈ {A ∪ {(i, J∗)|i ∈ NS}}, t ∈ {0, . . . , T − 1}, ∀k ∈ Ω
(2.12)

ensures that flow of a path can exist on an arc if and only if the arc belongs
to the path. There is a practical issue with the current formulation that a
flow may occur from a source node to another source node through a path in
time-expanded networks. This becomes a problem only if the flow stops at
the second source node for a time period. It means that some evacuees move
from one centroid to another centroid and stay there for a while without
any movements. This defeats the purpose of the evacuation planning: “non-
interrupted movement”. In Section 2.2.1, we mentioned that holdover arcs of
intersection nodes are not allowed to hold flow, but the source nodes. In order
to have a practical solution as mentioned above, we add further limitation
on this constraint that flow on holdover arcs allowed only for the source node
of path k, source(k). The corresponding constraint is

xitik = 0, ∀k ∈ Ω,∀t ∈ {0, 1, . . . , T − 1}, i ∈ {NC \ source(k)}. (2.13)
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Finally, we add the non-negativity constraints for all variables to the
optimization model:

xitjk ∈ Z+, (it, jt+~tij) ∈ {A
τ ∪ {(iT−1, J

∗)|i ∈ NS}}, t ∈ {0, 1, . . . , T − 1},
,∀k ∈ Ω,

ξiJ ′ ∈ Z+, i ∈ NC ,
yijk ∈ {0, 1}, ∀(i, j) ∈ A, t ∈ {0, . . . , T − 1},∀k ∈ Ω.

This completes the model formulation. As an input to CNFP, we need
to assign an upper bound on the number of paths to each centroid to se-
lect a subset of the paths and their optimal flows. However, this bound is
not known in advance and it affects the size of the model. Therefore, we
attempt to find an optimal number of paths to use for each centroid us-
ing Capacity Constrained Evacuation Planning algorithm in Section 3. A
stopping criterion of CCEP is the maximum number of vehicles that can be
safely evacuated from all centroids within a given evacuation time horizon.
This maximum number is obtained by relaxing CNFP on path, i.e., it only
optimizes for the maximum flow. The resulting model becomes a maximal
dynamic network flow model that optimizes the number of vehicles with-
out concerning the evacuation paths (see Section 2.4) and it is an input to
CCEP. The final output of CCEP will be the evacuation plan that includes
evacuation paths, their flows, and schedules.

2.4. A priority based maximal dynamic network flow optimization model for
generating an upper bound of the maximum weighted sum of evacuees

We denote the maximum weighted sum of evacuees as the total sum of
weights (i.e., priority values) times the maximum number of vehicles that can
be safely evacuated from all centroids to their destinations within a given time
horizon. First, let xitj be a non-negative integer variable that represents the
number of evacuation vehicles leaving node i to node j at time t. Then, the
optimization model (IPubd) for generating an upper bound on the maximum
number of evacuation vehicles can be formulated as follows:

max zubd =
∑
i∈NC

∑
j|(i0,j0+~tij )∈Aτ

ŵi · xi0j, (2.14)

s.t.
∑

j|(it,jt+~tij )∈Aτ
xitj + ξiJ ′ = si,∀i ∈ NC , t = 0, (2.15)
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∑
j|(it,jt+~tij )∈Aτ

xitj −
∑

j|(jt−~tji ,it)∈A
τ

xj(t−~tji)i = 0, ∀i ∈ N , t ∈ {1, . . . , T − 2},

(2.16)∑
i∈NS

xitJ∗ +
∑
i∈NC

ξiJ ′ =
∑
i∈NC

si, t = T − 1, (2.17)

xitj ≤ Ūit,jt+~tij ,∀(i, j) ∈ {A ∪ {(i, J
∗)|i ∈ NS}}, t ∈ {0, . . . , T − 1},

(2.18)

xitj ∈ Z+, t ∈ {0, . . . , T − 1}, (it, jt+~tij) ∈ {A
τ ∪ {(iT−1, J

∗)|i ∈ NS}}
ξiJ ′ ∈ Z+, i ∈ NC .

The objective function (2.14) is to maximize the weighted sum of evac-
uees. Constraints (2.15), (2.16), and (2.17) form our flow balance equations.
Constraint (2.15) implies that the supply of each centroid consists of two
groups of vehicles that evacuate either to safe destinations or the shelters.
Constraint (2.16) describes the balance of flow for time t = 1, . . . , T − 2.
Constraint (2.17) states that the total evacuees at time T − 1 must be equal
to the total supplies at the beginning of evacuation. Constraints (2.18) is
the capacity constrains for the flows of the movement arcs and holdover arcs,
respectively.

Theorem 2.1. The optimal solution of IPubd in Section 2.4 gives an upper
bound to the optimal objective value of the CNFP model, i.e., z∗cnfp ≤ z∗ubd.

Proof. Part I: Objective Function – We first show that both CNFP and
IPubd models have essentially the same objective function. A key component
of this proof is based on the following definition∑

k∈Ω

xitjk = xitj, ∀(it, jt+~tij) ∈ {A
τ ∪ {(iT−1, J

∗)|i ∈ NS}}. (2.19)
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By this definition, we make the claim as follows.

zcnfp =
∑
i∈NC

∑
k∈δi

∑
j|(i0,j0+~tij )∈Aτ

ŵi · xi0jk

=
∑
i∈NC

∑
j|(i0,j0+~tij )∈Aτ

ŵi ·

(∑
k∈δi

xi0jk

)
=
∑
i∈NC

∑
j|(i0,j0+~tij )∈Aτ

ŵi · xijk = zubd.

Part II: Feasible Region – Now, we show that the feasible region of CNFP is
tighter than that of IPubd. Note that IPubd does not have the path definition.
Therefore, we will focus on the CNFP constraints and show that some of the
constraints are equivalent to those of IPubd, some other constraints are simply
redundant in IPubd, and the rest of the constraints make the CNFP model
tighter than the IPubd model.

1. Flow Balance Equations: Based on the definition of (2.19), it is easy to
see that constraints (2.4) and (2.7) are identical to (2.15) and (2.17),
respectively. When we apply a summation over k on both sides of (2.6),
it becomes (2.16).

2. Bundle Constraints: By the definition given in (2.19), constraints (2.8)
is identical to (2.18).

3. Non-negativity Constraints: Since xitjk ≥ 0, xitj =
∑
k

xitjk ≥ 0.

Therefore, xi0J ′ , xitJ∗ ≥ 0 holds true in IPubd.
4. Extra Constraints: Finally, constraints (2.13) is the additional con-

straint along with the path generation constraints (2.9)–(2.11) to claim
that the feasible region of CNFP is tighter than that of IPubd.

Therefore, z∗cnfp ≤ z∗ubd.

3. Capacity Constrained Evacuation Planning Algorithm

The IPubd model in Section 2.4 finds the maximum weighted sum of evac-
uees that the current network can provide. Our next task is to find a way
to achieve an optimal solution to our evacuation problem using CCEP. Since
the number of paths per centroid is assumed to be given in advance, we deter-
mine the paths, flows, and schedule in CCEP and its procedure is described
below.
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First, we solve the IPubd model discussed in Section 2.4 to obtain the
optimal objective value z∗ubd. Based on the solution, we update the remaining
supply (RSiubd) for centroid i ∈ NC , i.e., RSiubd = ξiJ ′ . The optimal objective
value z∗ubd is used in the algorithm termination criterion while the value of
RSiubd is used to check the progress of the algorithm.

Step 0 Solve the IPubd model in Section 2.4

• Obtain z∗ubd;

• RSiubd ← ξiJ ′ ,∀i ∈ NC ;

Next, model parameters are initialized. We start by assuming that one
path is allowed per centroid in the CNFP model, (Ω = {ω1, ω2, . . . , ω|NC |}
and δi = {ωi},∀i ∈ NC ), where ωi represents the memory space of the ith

path that is defined in Step 1 and generated in Step 2. As an input parameter
to CNFP, the counter cnt is the maximum number of paths allowed in the
model. The value of cnt is initially set to the cardinality of the centroids,
cnt = |Ω|.

Step 1 Initialization

• Ω = {ω1, ω2, . . . , ω|NC |};

• δi = {ωi},∀i ∈ NC ;

• cnt← |Ω|;

In Step 2, given the value of cnt, we solve the CNFP model by assuming

that there are |δi| paths for node i, i.e., cnt =
∑
i∈NC

|δi|. Based on the solution,

we update the remaining supply (RSicnfp) for every centroid in NC . The
parameters RSiubd and RSicnfp are essentially used for deciding which of the
centroids will need more paths in the next step.

In Step 3, we compare the objective values z∗cnfp and z∗ubd. We use two
stopping criteria for termination.

Criterion 1:. If the total numbers of evacuees of both models are same, it
means that we already have sufficient number of paths for evacuation. There-
fore, the current solution is optimal and the algorithm terminates. However,
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Step 2 Solve the CNFP model to generate paths and flows

INPUT: cnt, |δi|,∀i ∈ NC

OUTPUT: z∗cnfp and δi, ∀i ∈ NC

Update: RSicnfp ← ξiJ ′ ,∀i ∈ NC

Step 3 Update path information

if Stopping criteria are satisfied then
Stop! Accept the current solution.

else
for i ∈ NC do
if RSicnfp > RSiubd then
cnt← cnt+ 1
δi = δi ∪ {ωcnt}
Ω = Ω ∪ {ωcnt}

end if
end for
Go to Step 2.

end if

if the weighted sum of evacuees in CNFP is less than that of the IPubd model
(z∗cnfp < z∗ubd), then some of the centroids still have positive remaining sup-
ply, i.e, ∃i ∈ NC such that RSicnfp > 0. Since RSiubd provides a lower bound
to RSicnfp, a centroid whose RSicnfp is larger than RSiubd, one path is added
to ensure a higher evacuation. As a result, cnt gets updated and a space is
reserved for this new path ωcnt that is to be determined in Step 2. Then, it
goes back to Step 2.

Criterion 2:. Since z∗ubd is an upper bound of zcnfp, CCEP may be repeated
without making progress in CNFP. Therefore, the algorithm also terminates
if there are no improvements in CNFP in γ consecutive times, γ > 1, and it
is the second stopping criterion.

Theorem 3.1. CCEP finds an optimal set of evacuation paths that maximize
the weighted sum of evacuees.

Proof. CCEP terminates when one of two stopping criteria is met. If it is
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terminated by the first criterion (i.e., z∗cnfp = z∗ubd), the minimum number of
paths to have the maximum weighted sum of evacuees is found. As described
in proof of Theorem 2.1, CNFP has a tighter feasible region than that of
IPubd, i.e., a feasible solution of IPubd may not be feasible for CNFP. Hence,
when the algorithm is terminated by the second criterion, adding extra paths
to the centroids that still has remaining supply does not improve the objective
function value in the future iterations. Therefore, the solution found in the
current iteration is optimal.

4. Evacuation Scheduling Algorithm (ESA)

Finding the optimal solution using CCEP can be computationally chal-
lenging due to the size of the network. To overcome the computational
burden, we propose Evacuation Scheduling Algorithm. ESA utilizes the Di-
jkstra’s algorithm (Edsger, 1959) to find the shortest path and the greedy
heuristic algorithm discussed in Section 4.1 for finding the maximum flow of
the path on the network.

4.1. A greedy algorithm for flow generation

Ford-Fulkerson algorithm (Ford and Fulkerson, 1962) is a typical choice
for finding the maximum flow over a network. We simplify this algorithm
to find the maximum flow over a path, P, in the static network for each
time interval. The maximum flow of P in the static network is the capacity
of P, which is the minimum capacity of the arcs associated with P. This
method can be generalized for finding the maximum flow of P over the time-
expanded network. In P, there is no connection between two nodes from
one time period to the next in the time-expanded network. This rule does
not apply to the source and the destination nodes. Therefore, the maximum
flow of P over the time-expanded network will be the total sum of the path
capacity over different time periods.

The greedy algorithm for finding the maximum flow of P over the time-
expanded network consists of the following steps. First, the maximum flow
value, MFV , is set to zero. Next, for each time period, t ∈ {0, 1, . . . , T − 1},
the path capacity, Capt

P
, is calculated such that the path capacity at time t

is defined as the minimum flow capacity among the arcs associated with P
at t. Finally, we add Capt

P
to MFV .

Comparing the greedy algorithm to Ford-Fulkerson algorithm, we do not
need to consider two-way arcs and augment the augmenting paths. So, the
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Greedy Algorithm
MFV ← 0;
for t ∈ {0, 1, . . . , T − 1} do

find the capacity of P at time t, Capt
P

.
MFV ←MFV+Capt

P

end for

complexity of the greedy algorithm can be estimated as O(m · T ) comparing
to the complexity of Ford-Fulkerson algorithm, O(m · f), where m is the
number of arcs and f is the maximum flow in the time-expanded network.

4.2. ESA Solution Procedure

The objective of our heuristic is to find the shortest evacuation path(s)
from each centroid to the safe area, and to push the maximum possible flow
through this path(s). A dummy safe node < d > is added to the static
network with an infinite capacity, an infinite impact time, and a zero supply.
All safe nodes are connected to this dummy safe node through arcs with
the capacity of the safe node and zero traveling time. These dummy nodes
and arcs are used to find the shortest distance from centroids to the closest
safe node. Given the shortest path, the greedy algorithm is applied on the
time-expanded network to obtain the maximum possible number of evacuees
that can flow through the path. If this path does not have enough capacity
to evacuate all the evacuees coming out from the centroid, a second shortest
path will be generated, and so on. Finally, all the evacuation paths, flows, and
leaving times for each centroid are reported as the output of the algorithm.

Step 1 Initialization

• Assign unique identification numbers to all nodes N in the network
G.

• Create a time-expanded network based on the static network.

• Cluster G into R regions so that each centroid belongs to a region
(or a set).

• r ← 1.
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We now describe the steps of ESA. First, the network G is divided into R
regions based on the evacuation priority (See equation (2.2)). Each centroid
of the network is assigned to one region based on the region definition dis-
cussed in Section 2.3. We then construct the corresponding time-expanded
network. We select region 1 as the first region for evacuation route planning
as described in Step 1. In Step 2, we select region r and move to Step 3.

Step 2 Region Selection

• Select set < r > and go to Step 3.

In Step 3, if the selected region still contains at least one centroid (i.e.,
set < r > is not empty), select a centroid (v) and move to Step 4. Otherwise,
a region with the next highest priority is selected, i.e., r = r + 1. If there is
another region to consider, r ≤ R, then move to Step 2; else, the algorithm
terminates. In this step, centroids are selected in the same way that we did
in CNFP model. As described in Section 2.3.1, all centroids in one region
has the same priority. Therefore, centroid v is selected randomly from region
r. Note that regions are selected based on their priority.

Step 3 Node Selection

if set < r > is not empty then
select a centroid < v > from set < r > and go to Step 4.

else
r ← r + 1
if r ≤ R then

go to Step 2.
else

stop!
end if

end if

In Step 4, a counter UC is reset to 0. UC is to count how many times
already existing paths were re-generated in Step 5. This is to prevent the
path generation step from generating the same path over and over again.
More details about the use of UC are given in Step 6.

A shortest path Pv is generated using the Dijkstra’s algorithm from the
current node v to Super-Safe node d in Step 5. We use the travel times of
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Step 4 Reset Counter

• UC ← 0

all arcs connecting those two nodes as the distance measure. Once a path
is found, we update travel times by adding a penalty term ∆ij > 0 to the
original ~tij as follow

∆ij =

⌈
µ · ςv

mPv

⌉
,∀(i, j) ∈ Pv, (4.1)

where the parameter µ > 0 is a penalty factor to the travel time of the arcs
in the generated path Pv, mPv is the number of arcs in the path Pv, and
ςv = sv/ŪPv is a path utilization factor in which sv is the supply of node v
and ŪPv is the capacity of the path Pv. A large ratio of ςv means that the
utilization of path Pv will be substantially lower in the next iteration because
arcs in this path are highly utilized in the current iteration. Therefore, a
higher penalty will be imposed on all arcs in this path. Suppose now that
two paths have the same ratio ςv, then a path with a higher mPv will have a
lower penalty so that some arcs in the path may be re-utilized in the future
paths.

The reason for this travel time update is because the same path may be
discouraged to be used in the future path generation. Note that, in Step 8,
we aim to push as much flow as possible through the path. Therefore, the
remaining capacity of the same path in the next iteration will likely to be
low once it is used.

Step 5 Path Generation

• Find the shortest path from centroid < v > to node < d > in static
network using the travel time ~tij as distance between nodes i and j.

• Update ~tij for each arc in the path in the static network: ~tij ←
~tij + ∆ij.

A path is called unique if it is not previously recorded as one of the
evacuation paths of node v. In Step 6, we check if the generated path Pv
in Step 5 is unique. If it is, we find the corresponding flow for the path in
Step 8. If Pv is not unique, attempts are made to generate a unique path
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for a finite number of times κ. If it fails, then we remove node v from the
current set r. If the value of κ is large, there will be a higher chance to find a
unique path. But it will increase the algorithm running time. Based on our
experiments, κ = 10 seems to be working reasonably well. Note that there
can be a situation where a node in region r may not have a feasible path.
This means that the supply on this node cannot be evacuated. In this case,
evacuees in those nodes need to be evacuated to nearest shelters.

Step 6 Unique Path Identification

if the path is unique then
go to Step 7.

else
UC ← UC + 1.
if UC > κ then

remove node < v > from set < r >.
go to Step 3.

else
go to Step 5.

end if
end if

In Step 7, given the path Pv from node v to node d, a maximum flow of
the path is obtained using the greedy algorithm. In this step, we ensure that
the flow value cannot exceed the supply of the node.

Step 7 Maximum Flow Generation

• Find the maximum flow of path Pv ← greedy algorithm.

Output: flow(Pv, t), ∀t

Maximum Flow(Pv) := fmax =
∑
t

flow(Pv, t)

Our final step is to check if the current path can push a positive flow.
If it can, the solution of the current iteration is saved, that includes the
path information, evacuation starting times, and their corresponding flows.
We then update the capacity of the arcs in the time-expanded network by
reducing the capacity by the amount of flow(Pv, t). Furthermore, the supply
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of node v is also reduced by fmax. If the resulting supply of node v becomes
zero, the node is removed from the set r, and the process continues in Step
3. Otherwise, another path will be generated in Step 5. On the other hand,
if Pv cannot hold a positive flow, then we assume that no more feasible path
can be generated. Therefore, node v is removed from the set r.

Step 8

if fmax > 0 then
• Record the path, leaving times, and flows.
for ∀(i, j) ∈ Pv and t ∈ {0, . . . , T − 1} do
Ūit,jt+~tij ← (Ūit,jt+~tij − flow(Pv, t)).

end for

• sv ← sv − fmax.

if sv = 0 then
Remove node < v > from set < r >.
go to Step 3.

else
go to Step 5.

end if
else

Remove node < v > from set < r >.
go to Step 3.

end if

Complexity of ESA. We analyze the worst case complexity of ESA. There are
eight steps in this algorithm. ESA spends most time in three steps: network
construction, shortest path algorithm, and the greedy algorithm. All other
steps are performed in linear time or faster. The time-expanded network
generation is done once and can be done in O((n+m) ·T ). In the worst case,
the shortest path algorithm can be done inO(n2) (Ahuja et al., 1993), the flow
assignment can be done in O(T ·m) in our greedy algorithm, and the network
updates will be performed and it is done in O(T ·m). The iteration repeats
|Nc| times. Therefore, the complexity of ESA is O(|Nc| ·n2)+O(|Nc| ·m ·T ).
Typically, |Nc| is much smaller than n in practice.
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5. Computational Results

5.1. Experiment Setup

We provide numerical experiments to show the performance of CCEP
and ESA for solving SNEP. Our base evacuation network is shown in Figure
4. This is the map of the Greater Houston area that includes the City of
Galveston, TX. Three regions are classified as R1, R2, and R3 that represent
the evacuation priority such that R1 � R2 � R3. Both algorithms, CCEP
and ESA, are developed in a C++ environment. CNFP was solved using
CPLEX 12.1. All experiments are made on a workstation with 2.83GHz
Intel Xeon Quad CPU and 16GB RAM running Windows Server 2008.

Figure 4: Houston-Galveston Evacuation Map

5.2. Numerical Results

First, we illustrate the procedure of CCEP on a small network (Figure
5) that has 3 centroids (NC = {1, 2, 3}), 5 intersections, and 2 safe nodes
(NS = {9, 10}). The numbers of evacuation vehicles (supplies) in centroids
1, 2, and 3 are 350, 185, and 200, respectively. The evacuation time horizon
is assumed to be 30 units (T = 30). The IPubd model (Section 2.4) is first
solved to generate an upper bound of zcnfp. In this example, IPubd provides
an optimal solution of 100% evacuation for each centroid, i.e. RSiubd =
0, ∀i ∈ NC .
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Figure 5: A sample evacuation network

Table 2 shows the results of CCEP for the problem instance in Figure
5. At the first iteration, one path is allowed for each of the three centroids.
Then, the CNFP model is solved. Since the remaining supply after solving

Table 2: An illustration of CCEP

iter.
NP† RS‡

% gap
C1 C2 C3 C1 C2 C3

1 1 1 1 225 60 75 49.98
2 2 2 2 100 0 0 13.61
3 3 2 2 0 10 0 1.36
4 3 3 2 0 0 0 0.00

† Number of Paths for each centroid

‡ Remaining Supply in each centroid

CNFP is greater than zero for all the centroids (RSicnfp > 0), we increase the
number of paths by one for all three centroids in the second iteration. At the
end of the second iteration, Centroid 1 still has positive remaining supply.
Therefore, another path is allowed to this centroid in the third iteration.
However, this has caused that Centroid 2 has a positive remaining supply as
a result. Note that since we only specify how many paths each centroid can
have, CCEP is free to choose paths within the given limitation in order to
optimize the total flow. Having zero remaining supply in one iteration does
not guarantee the same result in the following iterations. Thus, one more
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path is added to Centroid 2 from the fourth iteration which finds the optimal
flow that is identical to the solution obtained by IPubd.

In the second set of experiments, a sample network is constructed based
on the evacuation network of Greater Houston area (Figure 4). In the sample
network, we have 42 nodes which are connected by 111 arcs. Impact areas
are categorized into three regions. Region 1 has 6 centroids while regions 2
and 3 have 4 and 3, respectively. We have four safe nodes in the network.
Arcs in the network are either unidirectional or bidirectional. Arcs connecting
intersection nodes are bidirectional and the remaining arcs are unidirectional.
To test the sensitivity of CCEP and ESA on T and the total supply (

∑13
i=1 si),

we considered four different scenarios in which the total supply are 300, 600,
900, and 1200, respectively. In each scenario, we increased T by 1 from
time 24 until it reaches the minimum total number of evacuation paths,
which in this example is 13. For each scenario and each T , the total number
of completed evacuees (TNCE) and the total number of evacuation paths
(TNP) are recorded after running CCEP and ESA.

Table 3: Numerical results for comparison between CCEP and ESA

Time
Scenario 1 (Supply=300) Scenario 2 (Supply=600)

TNCE (%) TNP TNCE (%) TNP

IPubd CCEP ESA CCEP ESA IPubd CCEP ESA CCEP ESA

24 96.0 96.0 94.3 13 12 73.3 73.3 64.7 25 13
25 99.3 99.3 96.0 13 13 81.7 81.7 76.7 22 18
26 100.0 100.0 99.3 13 16 90.0 90.0 83.7 19 16
27 100.0 100.0 100.0 13 15 95.0 95.0 94.2 17 18
28 100.0 100.0 100.0 13 14 96.7 96.7 95.8 15 16
29 100.0 100.0 100.0 13 13 98.3 98.3 96.7 13 17
30 100.0 100.0 100.0 13 13 100.0 100.0 97.5 13 17
31 100.0 100.0 100.0 13 13 100.0 100.0 98.3 13 17
32 100.0 100.0 100.0 13 13 100.0 100.0 99.2 13 17
33 100.0 100.0 100.0 13 13 100.0 100.0 100.0 13 15
34 100.0 100.0 100.0 13 13 100.0 100.0 100.0 13 14
35 100.0 100.0 100.0 13 13 100.0 100.0 100.0 13 13

Table 3 and Table A.5 in Appendix Appendix A show the results of
experiments. In Table A.5, some of the entries are missing values because
optimal solutions of CNFP were not found in 12 hours running time and
CCEP requires optimal solution of CNFP. As described in Theorem 2.1,
CCEP produced solutions that reached the theoretical upper bound of TNCE
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given by IPubd in all cases. This result is important because it confirms
Theorem 3.1 that CCEP finds the minimum number of evacuation paths
that maximize the weighted sum of evacuees. Note that the major difference
between CCEP and IPubd is that the latter only generates the flows on arcs,
not the paths.

It is easy to see from these tables that as the value T increases, TNCE
monotonically increases while TNP monotonically decreases when CCEP is
applied. As described in Section 3, CNFP is a module of CCEP. The goal of
CCEP is to minimize the number of paths while CNFP is to maximize the
total evacuees. This explains the decreasing pattern of TNP as T increases.
Furthermore, a higher TNCE is expected when more time is available for
evacuation. The results are similar for ESA except that TNP fluctuates with
an overall decreasing pattern as T increases. It can also be seen from the
results that TNCE of CCEP is always higher than that of ESA in all scenarios
tested. However, the major drawback of CCEP is that it cannot handle large
networks when the centroids have high supply and the value of T is large.

For a performance comparison between CCEP and ESA, we generated
36 random networks that are variants of Figure 4. Each network may have
different network structure such as different number of nodes and arcs. The
different network configurations are shown in Table 4. The first column
includes problem case identification number. The second, third, and fourth
columns have the information related to the number of centroids in each
region. Note that Region 1 has the highest priority for evacuation followed
by regions 2 and 3. The next four columns show the number of nodes (n) and
arcs (m) in the static and dynamic networks. The total number of evacuees
(total supply) in each experiment is in the next column. Finally, the last four
columns include the comparison between CCEP and ESA on the percent of
evacuation and the CPU run time in seconds. Note that the planning time
horizon is assumed to be 2 days. Since the length of each time interval for
the dynamic network is 15 minutes, the total time interval is 192 units for
all 36 experiments, T = 192.

The first 9 cases are to evacuate 600 vehicles of total supply and both
ESA and CCEP achieved 100% evacuation. However, the CPU run times for
CCEP are substantially higher than those of ESA in all cases. The next set
of data includes 27 evacuation networks with 5,660 vehicles of total supply.
In all cases, CCEP failed to provide a solution within 12 hours while ESA
achieved 100% evacuation in less than a second except for Case 10.

Based on the experiments performed in this paper, it is clear that ESA
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Table 4: Numerical results for performance comparison between CCEP and ESA

ID
NC SNW† DNW‡ Total % Evacuation Time (sec)

r1 r2 r3 n m n m Supply ESA CCEP ESA CCEP

1 1 2 4 27 78 5185 16945 600 100 100 0.010 45.91
2 2 3 5 31 74 5953 16762 600 100 100 0.010 118.69
3 3 4 6 37 93 7105 20964 600 100 100 0.012 500.19
4 4 2 1 30 77 5761 16749 600 100 100 0.010 45.99
5 5 3 2 34 96 6529 20951 600 100 100 0.011 166.97
6 6 4 3 42 111 8065 24389 600 100 100 0.015 137.98
7 2 1 4 29 82 5569 17704 600 100 100 0.010 68.99
8 3 2 5 34 103 6529 22288 600 100 100 0.013 425.84
9 4 3 6 38 102 7297 22670 600 100 100 0.013 279.86

10 1 2 4 27 78 5185 16945 5660 93.2 – 0.011 –
11 2 3 5 31 74 5953 16762 5660 100 – 0.010 –
12 3 4 6 37 93 7105 20964 5660 100 – 0.013 –
13 4 2 1 30 77 5761 16749 5660 100 – 0.010 –
14 5 3 2 34 96 6529 20951 5660 100 – 0.012 –
15 6 4 3 42 111 8065 24389 5660 100 – 0.015 –
16 2 1 4 29 82 5569 17704 5660 100 – 0.011 –
17 3 2 5 34 103 6529 22288 5660 100 – 0.013 –
18 4 3 6 38 102 7297 22670 5660 100 – 0.014 –

19 4 5 7 46 141 8833 30692 5660 100 – 0.018 –
20 5 6 8 49 130 9409 29164 5660 100 – 0.019 –
21 6 7 9 52 153 9985 34130 5660 100 – 0.022 –
22 7 5 4 44 124 8449 27445 5660 100 – 0.017 –
23 8 6 4 47 122 9025 27636 5660 100 – 0.017 –
24 9 7 6 51 140 9793 31647 5660 100 – 0.020 –
25 5 4 7 43 133 8257 29164 5660 100 – 0.018 –
26 6 5 8 49 136 9409 30310 5660 100 – 0.019 –
27 7 6 9 52 146 9985 32793 5660 100 – 0.021 –

28 7 8 10 53 146 10177 33366 5660 100 – 0.022 –
29 8 9 12 61 167 11713 38141 5660 100 – 0.025 –
30 9 10 15 67 186 12865 42725 5660 100 – 0.029 –
31 10 8 7 54 141 10369 32411 5660 100 – 0.022 –
32 12 9 8 57 141 10945 33175 5660 100 – 0.022 –
33 15 10 9 71 186 13633 42720 5660 100 – 0.029 –
34 8 7 10 55 155 10561 35085 5660 100 – 0.023 –
35 9 8 12 60 159 11521 36613 5660 100 – 0.025 –
36 10 9 15 66 187 12673 42916 5660 100 – 0.030 –

† Static Network ‡ Dynamic Network
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Figure 6: Boxplots for CPU time comparison

is able to find solutions fast even as the network size increases. Figure 6(a)
is a boxplot that shows CPU run time distribution for 9 small (6,023 nodes
in average), 9 medium (8,517 nodes in average), and 9 larger (10,694 nodes
in average) cases. There is an up trend in computation time as the network
size increases. The median computation time increased from 0.012 seconds
to 0.019 seconds and 0.025 seconds from the small case to medium and large
cases, respectively. However, all problems were solved significantly faster
than CCEP as can be seen in Figure 6(b).

6. Conclusion

We have developed a capacitated network flow model for short notice
evacuation planning. This model is used to determine the starting time for
executing the evacuation process, recommended evacuation paths, and their
flow for priority based evacuation networks. Since an evacuation occurs over
time, the original (static) network is extended to a time-expanded (dynamic)
network to capture the dynamics of the evacuation networks over time. There
is no known polynomial algorithm for solving SNEP. Therefore, a capacity
constrained evacuation planning algorithm is developed to find an optimal
solution to our problem. However, due to the exponentially growing size
of the dynamic network as the size of the static network increases, CCEP
fails to find a solution for large networks. To overcome this computational
complexity, we have developed a heuristic algorithm Evacuation Scheduling
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Algorithm to expedite the solution process. We have shown that the com-
plexity of ESA is O(|Nc| ·n2) +O(|Nc| ·m · T ). Numerical experiments show
superior performance gain of ESA over CCEP. In small test networks, ESA
ran up to 41,682 times faster than CCEP (0.012 vs 500.19 CPU seconds). To
medium to large test network instances, CCEP failed to generate a solution
while ESA obtained optimal solutions (except for one instance) within 0.03
seconds on all network instances.

In any emergency situation, there is uncertainty associated with how
the situation will progress. Therefore, future work of this research should
consider uncertainty of the model input parameters such as road capacity,
traversal times, and the number of evacuees coming from each impact area.
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Appendices
Appendix A. Comparison between CCEP and ESA

Table A.5: Numerical results for comparison between CCEP and ESA

Time
Scenario 3 (Supply=900) Scenario 4 (Supply=1200)

TNCE (%) TNP TNCE (%) TNP

IPubd CCEP ESA CCEP ESA IPubd CCEP ESA CCEP ESA

24 48.9 48.9 47.8 25 13 36.7 36.7 35.0 25 16
25 54.4 54.4 54.4 25 16 40.8 40.8 39.2 25 16
26 60.0 60.0 60.0 25 17 45.0 45.0 43.3 25 16
27 65.6 65.6 65.6 23 17 49.2 49.2 49.2 24 18
28 71.1 71.1 68.9 21 18 53.3 53.3 53.3 24 18
29 76.7 76.7 73.4 24 19 57.5 57.5 57.5 24 18
30 82.2 82.2 79.7 20 16 61.7 61.7 60.4 22 19
31 87.8 – 83.9 – 17 65.8 65.8 64.6 21 20
32 93.3 – 91.6 – 16 70.0 70.0 70.0 20 20
33 98.1 – 94.9 – 16 74.2 – 72.9 – 16
34 99.2 – 95.9 – 17 78.3 – 74.6 – 17
35 100.0 – 96.4 – 16 82.5 – 81.7 – 16
36 100.0 – 97.0 – 16 86.7 – 85.8 – 16
37 100.0 – 97.6 – 16 90.8 – 90.0 – 16
38 100.0 – 98.1 – 15 95.0 – 91.6 – 18
39 100.0 – 98.7 – 15 99.2 – 93.8 – 17
40 100.0 – 99.2 – 15 100.0 – 96.7 – 17
41 100.0 – 99.8 – 15 100.0 – 97.1 – 17
42 100.0 – 100.0 – 14 100.0 – 97.5 – 16
43 100.0 – 100.0 – 13 100.0 – 97.9 – 16
44 100.0 – 100.0 – 13 100.0 – 98.3 – 16
45 100.0 – 100.0 – 13 100.0 – 98.8 – 15
46 100.0 – 100.0 – 13 100.0 – 99.2 – 15
47 100.0 – 100.0 – 13 100.0 – 99.6 – 15
48 100.0 – 100.0 – 13 100.0 – 100.0 – 15
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