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Abstract

In this paper, we discuss two challenges of long term facility location prob-
lem that occur simultaneously; future demand change and uncertain number
of future facilities. We introduce a mathematical model that minimizes the
initial and expected future weighted travel distance of customers. Our model
allows relocation for the future instances by closing some of the facilities that
were located initially and opening new ones, without exceeding a given bud-
get. We present an integer programming formulation of the problem and
develop a decomposition algorithm that can produce near optimal solutions
in a fast manner. We compare the performance of our mathematical model
against another method adapted from the literature and perform sensitiv-
ity analysis. We present numerical results that compare the performance of
the proposed decomposition algorithm against the exact algorithm for the
problem.
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1. Introduction

Facility location problems have been widely studied by many researchers
on a variety of sectors. Examples can include public facilities such as schools
and public libraries that are located to best serve the communities. Most of
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the time, community can be viewed as a group of people, where the initial
demand for such facilities are known (Min, 1988). Locations of these facilities
are not intended for a short term. These facilities should be able to serve the
communities for a longer time, where we can expect changes in the demand
of the communities.
As an example, we consider the population of 256 counties in the state of
Texas. When we looked at the U.S. Census Data and compared the popula-
tion in those counties for years 1990 and 2000, we observed that 22 counties
had a population change - both increase and decrease - of more than 40%.
Also, 73 counties had more than 20% population change during these years.
Similar changes were observed all around U.S. (Cen).
Let us assume that we initially located facilities to serve those counties based
on the demand in 1990. When we came to the year 2000, we would have
observed that population change over a decade made some of the existing
facilities being closer to lower demand, and some high demand areas being
away from the existing facilities. Therefore, existing facilities may no longer
be able to provide adequate service, which yields to an intolerable increase
in total weighted distance traveled by the customers. In such situations,
closing some of the existing facilities and opening new ones are essential and
inevitable. For such problems, we need to determine the initial locations and
a possible future relocation plan for the facilities in order to minimize the
total traveling distance of the customers.
Locating facilities initially and relocating them in the future is a long term
decision. In such long term decisions the number of future facilities usually
may not be known for sure at the time of locating initial facilities. This
uncertainty may happen due to various reasons. For example, suppose that
the available budget or company policies limit the number of initial facilities
to open at the beginning. However, additional budget or policy changes may
allow the company to plan for a different number of facilities in the future.
Also, the number of facilities in the future may depend on the success of the
initial ones (Berman and Drezner, 2008). Therefore, the initial locations of
the facilities should be determined considering the probability of change in
the number of facilities in the future as well.
In this paper, we discuss two challenges of long term facility location prob-
lem that occur simultaneously; future demand change and uncertain number
of future facilities. We introduce an integer programming (IP) model that
minimizes the initial and expected future weighted distance of customers.
Our model allows relocation for the future instances by closing some of the
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existing facilities and opening new ones, without exceeding a given budget.
The rest of this paper is organized as follows. In Section 2, we present the
relevant literature review. Section 3 describes the methodology, where we
develop the mathematical model. In Section 4, we develop a decomposition
algorithm as the proposed solution algorithm. In Section 5, numerical results
are presented to show that our decomposition algorithm works well in both
solution quality and time. We conclude the paper in Section 6.

2. Literature Review

P -median problem is a well known facility location problem and first
introduced by Weber in the 1900’s (Reese, 2006). The form that we are dis-
cussing today was developed by Hakimi in 1960’s (Hakimi, 1964, 1965). Since
then, solution techniques for the problem have become an abundant area of
research. Various techniques such as relaxations, heuristics, and metaheuris-
tics have been developed to solve the p-median problem (Reese, 2006). A
recent paper introduced new approaches to improve the solution quality and
CPU time of some of the existing techniques (Lim et al., 2009). The stochas-
tic extensions of the p-median problem were also introduced in literature
(Berman and Krass, 2002). The problem of locating p facilities currently
and then locating new facilities in the future is discussed by Current et al.
(1998). Because the number of future facilities is unknown, they used min-
imax regret criterion and compared it with the expected opportunity loss
criterion. However, their objective function considers only the future sce-
narios, and assumes that the initially located facilities are not allowed to be
closed in future scenarios. The conditional p-median problem solves the issue
of locating a certain number of new facilities, with the knowledge of locations
of the existing facilities (Drezner, 1995).
The p-median problem under uncertainty (Berman and Drezner, 2008) aims
to locate p facilities initially, knowing that up to q additional facilities will be
located in the future. Given the probabilities of locating r ∈ {0, 1, 2, . . . , q}
more facilities, they formulated the problem on a graph, constructed the in-
teger programming formulation, suggested heuristic solution techniques and
extensively analyzed the case where q = 1. An important shortfall of this
approach is that it does not allow facility closings. Both initial and future
locations are determined considering a constant demand. However, as we
discussed in the introduction section, due to demand changes over time,
it may be necessary to close some of the existing facilities. The demand
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changes causing such relocations can easily be captured by forecasts and any
uncertainty in the demand can be managed by improved forecasts (Owen
and Daskin, 1998). From a computational point of view, their mathematical
model is hard to solve especially for large scale problems and the proposed
heuristic approaches are not suitable for cases with q > 1.
As we have mentioned, most of the papers in the literature concern opening
new facilities only, whereas only a small fraction of these deals with closing
facilities (Leorch et al., 1996). Wang et al. (2003) claims that it is not always
realistic to consider closing existing facilities and opening new ones apart
from each other. In the same manner, some authors considered relocation
of facilities in dynamic environments such as the dynamic location alloca-
tion problem with facility relocation by Wesolowsky and Trusctott (1975).
Their goal was to minimize the overall relocation and allocation costs con-
sidering the opening and closing costs of facilities. A relocation problem for
public facilities was introduced with the solution of a real life problem in
Min (1988). A fuzzy multi-objective model with constraints on budget and
the maximum number of relocations per period was constructed to solve the
problem. Supply chain point of view of the problem was also studied in the
literature (Melo and Saldanha da Gama, 2005). They introduced a mixed in-
teger programming (MIP) model to minimize the cost for a multi-commodity,
multi-echelon, dynamic network by means of relocation of facilities and ca-
pacity transfers which all are performed in a given budget. Even though
extra sources for the budget can be considered in real life, a fixed budget
value has often been used in the literature. In our paper, assuming a fixed
budget to control relocations, we consider different levels of available budget
and perform sensitivity analysis so that the impact of different budget values
on decision making could be observed.
Wang et al. (2003) aimed to minimize the total weighted distance between
the facilities and customers, by closing some of the existing facilities and
opening new ones, where they incur opening and closing costs. The main
reason behind this relocation is customer demand change over time. One is-
sue, which was not considered in their work, is the uncertainty of the number
of facilities in the future. They assumed that the number of future facilities
is given. However, the number of future facilities may not be certain for
many reasons as we mentioned in the introduction section. Two approaches
in the existing literature can be adapted for the cases where we have future
demand change and uncertain number of future facilities.
In the first approach, the initial facility locations are optimized based on
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the current demand. When the demand change occurs in the future, the
technique in (Wang et al., 2003) can be utilized to determine the relocations
within a given budget in order to minimize the total weighted distance. Since
this method does not consider the uncertainty of total number of facilities in
the future, some facilities that are initially located might not be optimal for
different future scenarios. This may lead to higher costs due to higher trav-
eling distance, lower customer satisfaction and higher budget consumptions.
The second approach is to find the best locations for initial facilities consid-
ering the possibility of adding more facilities (Berman and Drezner, 2008).
However, this method does not consider closing any of the existing facilities
and is unable to handle the future demand change. Therefore, this approach
is not capable of dealing with the systems that are inherent to such a change.
It is clear that, these challenges of relocation and uncertain number of future
facilities can be observed in many sectors such as service industry, military
bases, supply chain, etc. (Dell, 1998; Melo and Saldanha da Gama, 2005;
Sathe and Miller-Hooks, 2005).
In order to overcome the limitations of the existing literature, we propose
a solution approach that can determine the initial locations and future re-
locations of facilities where demand is subject to change and the number of
future facilities is uncertain. Our aim is to minimize the initial and expected
future weighted distances without exceeding the given budget for opening
and closing facilities.

3. Methodology

3.1. Problem Definition

Suppose that we have a connected, undirected network, N = (V,E), where
V = {v1, . . . , vn} is the set of n vertices and E is the set of edges. Let wi ≥ 0
be the initial demand at vertex vi, and λi ≥ 0 be the demand forecast in the
future at vertex vi. The shortest path between vi and vj is denoted as dij.
Parameter p is the initial number of facilities and q is the upper limit for the
increase in number of future facilities. The probability that r ∈ [0, q] facilities

will be added is estimated as αr such that
q∑

r=0

αr = 1. Due to the changes

in the future demand in the network, we are allowed to perform relocations;
we can close some of the existing facilities and open new facilities. Opening
cost for a facility at vj is denoted as oj and closing cost is denoted by cj.
Parameter b is the total available budget for opening and closing facilities.
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We will discuss two approaches to handle the facility location and relocation
problem presented above. The first approach is adapted from (Wang et al.,
2003) and because of its deterministic nature we label it Facility Location
and Relocation Problem - Deterministic (FLRP-D). Our proposed approach
solves the problem under uncertain number of future facilities and is called
Facility Location and Relocation Problem - Uncertainty (FLRP-U).

3.1.1. FLRP-D

The notation V1 is the set of existing facilities and V2 is the set of potential
facility sites, where V = V1 ∪ V2. In this method, (p + r) will be the total
number of desired facilities where the problem will be solved for all r ∈ [0, q].
We assume that initial facilities are located to the best possible sites based
on the initial demand. After the demand change occurs, relocations can be
performed using the following formulation. FLRP-D can be formulated as a
Binary Integer Program (BIP) with two sets of decision variables which are:

νj =

{
1, if facility at vj is open, ∀j ∈ V,
0, otherwise.

xij =

{
1, if demand at vi is assigned to facility at vj, ∀i, j ∈ V,
0, otherwise.

Then the problem formulation for FLRP-D for a given scenario r is

minZ =
∑
i∈V

λi
∑
i∈V

dijxij (3.1)

s.t.
∑
j∈V1

cj (1− νj) +
∑
j∈V2

ojνj ≤ b, (3.2)∑
j∈V

νj = p+ r, (3.3)∑
j∈V

xij = 1, ∀i ∈ V, (3.4)

xij ≤ νj, ∀i, j ∈ V, (3.5)

νj, xij ∈ {0, 1}, ∀i, j ∈ V. (3.6)

The objective of the formulation is to minimize the total weighted distance.
Constraint (3.2) is to limit that opening and closure of the facilities are
performed within the given budget. Constraint (3.3) makes sure that exactly
p+ r facilities are located. Constraint (3.4) states that demand at each vi is
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assigned to a facility. Constraint (3.5) makes sure that we cannot assign the
demand at vi to vj unless a facility is located at vj.

3.1.2. FLRP-U

In FLRP-U, our aim is to find the best locations for the initial facilities,
and identify the possible relocations in the future knowing that number of fu-
ture facilities may increase by r, r ∈ [0, q]. The relocations are maintained by
closing some of the facilities that were located initially and opening new ones
and the objective is minimizing the total of the initial weighted distance and
the expected future weighted distance traveled by customers. Unlike FLRP-
D, location and relocation of facilities are optimized considering the future
demand change and uncertain number of future facilities, simultaneously.
FLRP-U can also be formulated as BIP. For FLRP-U formulation, there are
six sets of decision variables and they are defined as follows:
The number of additional facilities is given as r, for r = 0, . . . , q.

ξj =

{
1, if one of the initial p facilities is located at vj, for j = 1, . . . , n,
0, otherwise.

πij =

{
1, if demand at vi is assigned to facility at vj, for i, j = 1, . . . , n,
0, otherwise.

yrj =

{
1, if facility at vj is selected to open, for j = 1, . . . , n,
0, otherwise.

zrj =

{
1, if facility at vj is selected to close, for j = 1, . . . , n,
0, otherwise.

srj =

{
1, if facility at vj is open (facility exists), for j = 1, . . . , n,
0, otherwise.

xrij =

{
1, if demand at vi is assigned to facility at vj, i, j = 1, . . . , n,
0, otherwise.

Note that defining the binary allocation variables (πij for FLRP-D and xrij
for FLRP-U) as continuous variables may result in a binary solution in some
problem instances. However, this is not true for all cases as reported in
Rosing et al. (1979).
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Then, the problem formulation is

minZ =

q∑
r=0

αr

n∑
i=1

λi

n∑
j=1

dijx
r
ij +

n∑
i=1

wi

n∑
j=1

dijπij (3.7)

s.t.
n∑

j=1

(
cjz

r
j + ojy

r
j

)
≤ b, r = 0, . . . , q, (3.8)

n∑
j=1

ξj = p, (3.9)

n∑
j=1

srj = p+ r, r = 0, . . . , q, (3.10)

n∑
j=1

πij = 1, i = 1, . . . , n, (3.11)

n∑
j=1

xrij = 1, i = 1, . . . , n, r = 0, . . . , q, (3.12)

πij ≤ ξj, i, j = 1, . . . , n, (3.13)

xrij ≤ srj , i, j = 1, . . . , n, r = 0, . . . , q,(3.14)

srj − ξj − yrj + zrj = 0, j = 1, . . . , n, r = 0, . . . , q, (3.15)

yrj + zrj ≤ 1, j = 1, . . . , n, r = 0, . . . , q, (3.16)

ξj, πij ∈ {0, 1}, i, j = 1, . . . , n, (3.17)

yrj , z
r
j , s

r
j , x

r
ij ∈ {0, 1}, i, j = 1, . . . , n, r = 0, . . . , q.(3.18)

The objective of the problem is to minimize the total weighted distance
which is the summation of current weighted distance and expected future
weighted distance. Constraint (3.8) is the budget limitation. Constraints
(3.9) and (3.10) make sure that p facilities are located initially, and p + r
facilities are located in the future. Constraint (3.11) and (3.12) make sure
that we assign the demand at each vi to a facility in the initial case and
future scenarios, respectively. Constraint (3.13) and (3.14) ensure that we
cannot assign the demand at vi to a facility unless a facility is located at vj
in the initial case and future scenarios, respectively. Constraint (3.15) sets
the conditions for existence of a facility in future scenarios. Constraint (3.16)
prevents simultaneous opening and closing of a facility in each scenario. If we
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omit this constraint, some optimal solutions may suggest that a facility be
opened and closed at the same time. Mathematically, it should not matter
if there is an ample budget to do so and it would not affect the objective
function value. However, in reality, it is not reasonable to open and close the
same facility at the same time. Therefore, having this constraint will ensure
a more accurate and practical solution.

3.2. Problem Complexity

Theorem 1 below states that FLRP-D is NP-Hard. We now attempt
to show complexity of FLRP-U by reducing the problem to FLRP-D or its
equivalent formulation.

Theorem 1. FLRP-D is NP-hard. (Wang et al., 2003).

To find an equivalent formulation of FLRP-D, we first reformulate FLRP-
D with different variables and parameters following a similar structure to the
formulation of FLRP-U.
Let ξj be a parameter that assumes the value of 1 if one of the p facilities
is located at vj initially and 0 otherwise. Then the decision variables are as
follows:

yj =


1 if facility at vj is selected to open in the future,

for j = 1, . . . , n,
0 otherwise.

zj =


1 if facility at vj is selected to close in the future,

for j = 1, . . . , n,
0 otherwise.

sj =


1 if facility at vj is open (facility exists) in the future,

for j = 1, . . . , n,
0 otherwise.

xij =


1 if demand at vi is assigned to facility at vj in the future,

for j = 1, . . . , n,
0 otherwise.
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Then the reformulation for FLRP-D for a given scenario r is as follows:

minZ =
∑
i∈V

λi
∑
i∈V

dijxij (3.19)

s.t.
n∑

j=1

(cjzj + ojyj) ≤ b, (3.20)

n∑
j=1

sj = p+ r, r = 0, . . . , q, (3.21)

sj − ξj − yj + zj = 0, j = 1, . . . , n, (3.22)

yj + zj ≤ 1, j = 1, . . . , n, (3.23)
n∑

j=1

xij = 1, i = 1, . . . , n, (3.24)

xij − sj ≤ 0, i, j = 1, . . . , n, (3.25)

yj, xij ∈ {0, 1}, i, j = 1, . . . , n. (3.26)

Propositon 1. The original formulation and the reformulation of FLRP-D
are equivalent.

Proof. The objective functions of the original formulation of FLRP-D and
its reformulation are the same. Therefore, we will show the equivalence
of the two formulations, by performing the following steps. If a facility is
open at node j, variables sj and νj are equal to 1 and 0, otherwise, in their
corresponding formulations. Therefore, we can put sj instead of νj in the
original formulation. By using the constraint (3.22) in the reformulation, we
can rewrite the constraint (3.2) in the original formulation. In the first part
of the constraint, for V1, since the only possible operation in V1 is closing
a facility, sj = ξj − zj. In the second part, for V2, since the only possible
operation in V2 is opening a new facility, sj = ξj + yj. Then, the constraint
in the original formulation can be modified as follows:∑

j∈V1

cj (1− ξj + zj) +
∑
j∈V2

oj(ξj + yj) ≤ b (3.27)
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As we know that ξj = 1 for V1 and ξj = 0 for V2, the constraint becomes∑
j∈V1

cj (zj) +
∑
j∈V2

oj(yj) ≤ b (3.28)

In order to combine the two parts, we add the constraint yj +xj ≤ 1 to make
sure that at most one of those actions (opening and closing) can be performed,
which ensures that there is no intersection between V1 and V2.

Corollary 1. FLRP-U is NP-hard.

Proof. If we formulate FLRP-U for r = 0 and relax the constraints (3.9),
(3.12) and (3.14), the problem reduces to the reformulation of FLRP-D.
Due to the increase in number of variables and constraints, solving FLRP-U
for multiple scenarios is much harder than solving the problem for a single
scenario, when r = 0. Therefore, by the Theorem 1 and Proposition 1 we
claim that FLRP-U is NP-hard.

4. Solution Algorithm

As we discussed, FLRP-U is NP-hard and the problem size grows rapidly
when we increase the number of facilities as well as future scenarios. There-
fore, BIP formulation of the problem becomes very difficult to solve optimally,
especially for large instances. To be able to solve the problem in a timely
manner, we analyzed the formulation and observed the block-angular struc-
ture of the problem, which is suitable for a decomposition approach (Sweeney
and Murphy, 1979). Then, we developed a decomposition algorithm to solve
FLRP-U, where initial and future scenarios for facility locations demonstrate
the blocks and the rest of the constraints form the bridge constraints. The
block-angular structure of the problem can be observed better in the fol-
lowing re-arranged formulation. The first three sets of constraints are bridge
constraints and initial and future scenarios for facility locations are the blocks
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connected by the bridge constraints.

Min
n∑

i=1

wi

n∑
j=1

πijdij +α0

n∑
i=1

λi
n∑

j=1

x0ijdij + . . . +αq

n∑
i=1

λi
n∑

j=1

xqijdij

s.t.
−ξj +s0j −y0j + z0j = 0

. . .
...

ξj +sqj −yqj + zqj = 0
n∑

j=1

ojy
r
j +

n∑
j=1

cjz
r
j ≤ b

yrj + zrj ≤ 1
n∑

j=1

ξj = p

n∑
j=1

πij = 1

−ξj + πij ≤ 0
n∑

j=1

s0j = p

n∑
j=1

x0ij = 1

−s0j + x0ij ≤ 0
. . .

...
n∑

j=1

sqj = p+ q

n∑
j=1

xqij = 1

−sqj + xqij ≤ 0.

For the ease of illustration, the following variable and parameter substitu-
tions will be used for the decomposition algorithm. Let tk and u be bi-
nary decision variables. Variable tk is substituted for variables ξj, πij, s

r
j , x

r
ij

and k is the index for each block i.e. t1 = [ξ1, . . . , ξn, π11, . . . , πnn], t2 =
[s01, . . . , s

0
n, x

0
11, . . . , x

0
nn], . . . , tq+2 = [sq1, . . . , s

q
n, x

q
11, . . . , x

q
nn]. The variable u

is substituted for variables yrj and zrj i.e. u = [y01, . . . , y
q
n, z

0
1 , . . . , z

q
n]. Let A

and B represent the constraint coefficients and right hand side values of the
constraints, respectively, and C represent the objective function coefficients.
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Then FLRP-U can be re-written as follows:

Min C1t1 +C2t2 + . . . +Cq+2tq+2

s.t.
A011t1 +A012t2 + . . . +A01(q+2)tq+2 +A01(q+3)u = B01

A02(q+3)u ≤ B02,
A03(q+3)u ≤ B03,

A11t1 = B11,
A12t1 = B12,
A13t1 ≤ B13,

A21t2 = B21,
A22t2 = B22,
A23t2 ≤ B23,

. . .
...

A(q+2)1tq+2 = B(q+2)1,
A(q+2)2tq+2 = B(q+2)2,
A(q+2)3tq+2 ≤ B(q+2)3.

If we apply Lagrangian relaxation to the bridge constraints (with multiplier
µ), we will obtain (q+2) sub-problems as follows:

(SPk)

Min (Ck − µA0k)tk
s.t.

Ak1tk = Bk1,
Ak2tk = Bk2,
Ak3tk ≤ Bk3,
tk ∈ {0, 1}.

Let t∗ denote the optimal solution for each subproblem, then a lower bound
for the original problem can be obtained by the following equation (Sweeney
and Murphy, 1979).

zl = (C1−µA01)t
∗
1 + (C2−µA02)t

∗
2 + . . .+ (Cq+2−µA0(q+2))t

∗
q+2 +µB0 (4.1)

A good lower bound can be obtained by solving the LP relaxation of the sub-
problems since LP relaxation of p-median problems often leads to optimal or
very close to optimal solutions (Rosing et al., 1979).
Let sk be the set of columns that are included in the master problem for
subproblems k = 1, . . . , (q + 2). Let τ ksk be 1 if the corresponding column
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is in the optimal master problem solution and 0 otherwise. Then we can
construct the master problem as follows:

(MP )
Min

∑
s1

(C1t
1
s1

)τ 1s1 +
∑
s2

(C2t
2
s2

)τ 2s2 + . . . +
∑
sq+2

(Cq+2t
q+2
sq+2

)τ q+2
sq+2

s.t. ∑
s1

A011t
1
s1

+
∑
s2

A012t
2
s2

+ . . . +
∑
sq+2

A01(q+2)t
q+2
sq+2

+A01(q+3)u= B01,

A02(q+3)u≤ B02,
A03(q+3)u≤ B03,∑

s1

τ 1s1 = 1,∑
s2

τ 2s2 = 1,

. . . ∑
sq+2

τ q+2
sq+2

= 1.

The parameter B01, which is the right-hand-side value of the bridge con-
straints that connect the subproblems, is equal to 0. Therefore, equation
(4.1) implies that selecting the Lagrangian coefficient (µ) as a nonzero value
may not have a big impact on the lower bound quality. So we select (µ) to be
0, and then each subproblem becomes a weighted p-median problem where
the first subproblem has the initial weights of the vertices (wi), and the rest
of the subproblems have the multiplication of scenario probability by future
weights of the vertices (αkλi) for k = 2, . . . , (q + 2), i = 1, . . . , n.
The column sets for the master problem are obtained by solving each sub-
problem using a modified version of Discrete Lloyd Algorithm (DLA), a
heuristic solution technique that can generate good upper bounds for the
p-median problem (Lim et al., 2009). DLA can be used for problems that
are on a real network with uniform vertex weights. The algorithm starts
with an initial set of medians, and divides the network into p clusters by as-
signing each vertex to its closest median. For each cluster, center of gravity
is determined and projected to the closest vertex in the network, which will
construct an updated set of medians. The procedure is repeated until there
is no change in the median locations. Since our subproblems are weighted
p-median problems, we make a slight modification to their algorithm when
calculating the center of gravity by incorporating the vertex weights.
The structure of our proposed solution algorithm is explained in Figure 1.
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Initialize: i ← 0,
m← Maximum number of iterations,
δ∗← Desired dual gap.

1. Solve the LP relaxation of (SPk) for k = 1, . . . , q + 2 and calculate
the lower bound, zl, (4.1).
do{

2. Create multiple feasible solutions for (SPk) for k = 1, . . . , q + 2
using DLA.

Add those feasible solutions as columns to (MP ).
3. Solve (MP ) and obtain the upper bound, zu.
4. Calculate the actual dual gap,
δi = zu−zl

zl
.

5. i← i+ 1.
}while{(δi > δ∗)and(i ≤ m)}

Figure 1: Decomposition algorithm for FLRP-U

The algorithm starts by initializing the parameters. The lower bound
(zl) for FLRP-U is calculated by adding up the objective function values of
the LP relaxation of each subproblem. Then, multiple feasible solutions for
each subproblem are created using DLA. An upper bound for FLRP-U (zu) is
obtained by solving the master problem and the actual dual gap is calculated
by (zu − zl)/zl. If the actual dual gap is greater than the desired dual gap
and maximum number of iterations has not been reached, we create more
solutions for the subproblems and continue the algorithm.

5. Numerical Results

In this section we present our numerical results for the methods discussed
in Sections 3 and 4. We will first illustrate FLRP-U on a small network and
present the numerical results that are used to compare FLRP-U and FLRP-
D. Then, we will perform sensitivity analysis for FLRP-U. We will also show
the results that compare the performance of our algorithm with the exact
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solution technique, the mathematical model we introduced in Section 3.1.2.
All numerical results presented in this section were run on a Pentium 4 Xeon
3.6 Ghz machine with 4 GB RAM.

5.1. An Illustration with 1-median problem

A small example for FLRP is illustrated in Figure 2. The network has six
nodes and nine arcs. Numbers near the nodes are the initial and forecasted
future demand (initial, future). Numbers on the arcs represent the distances
between the nodes. Suppose we need to locate one facility initially, and

Figure 2: An illustrative 6 node network

we may locate up to two more facilities in the future, i.e. q = 2. The
probability of adding one facility and two facilities are assumed to be 0.3,
respectively, while the probability of adding no facilities is 0.4. A budget
of 500 is available for the facility opening and closing operations. Based on
the initial weights, optimum one median is located at node 6. Based on
FLRP-D, the optimal decision when r = 0 is to close the facility at node 6
and open a new facility at node 2. The optimal solution for r = 1 is to keep
the existing facility at node 6 and open another one at node 4. For r = 2,
it is to keep the existing facility at node 6 and to open two new facilities
at nodes 3 and 4. On the other hand, FLRP-U proposes to open the initial
facility at node 2. In the future, when r = 0, the optimal decision is to
keep that facility. When r = 1, FLRP-U suggests that we keep the existing
facility and open a new facility at node 5. When r = 2, we should again keep
the existing facility at node 2, and open new facilities at nodes 1, 3. The
total weighted distance comparison for FLRP-D and FLRP-U is shown in
Table 1. Table 2 shows the expected budget consumption for both methods.
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Expected weighted distance and expected budget consumption is calculated
by multiplying the probability of each scenario by the corresponding weighted
distance and budget consumption, respectively. As can be seen from these
tables, FLRP-U yields a better objective function value and lower budget
consumption. Since this is a small example with a small budget, FLRP-U
did not propose closing of the existing facility in any scenario. However, for
larger cases, it considers the relocation opportunity to find the best solutions.

Table 1: Total weighted distance for both methods

Method
Weighted Distance

initial r=0 r=1 r=2 expected total
FLRP-D 91 117 78 55 86.7 177.7
FLRP-U 93 117 51 41 74.4 167.4

Table 2: Budget consumption for both methods

Method
Budget Consumption

r=0 r=1 r=2 expected
FLRP-D 280 259 494 337.9
FLRP-U 0 293 497 237

5.2. FLRP-U vs. FLRP-D

As mentioned previously, for FLRP-D we assumed that initial facilities
are located to the best possible sites, based on the initial weights. For com-
parison purposes, future weighted distances for each scenario are used to
calculate the expected weighted distance. Summation of expected weighted
distance and initial weighted distance yields the total weighted distance,
which forms the main objective function.
The FLRP-U was tested on 20 randomly generated networks with 250 nodes
in each network. Table 3 shows the parameters that are generated randomly
from their corresponding uniform distributions. Table 4 shows different in-
stances for q values and corresponding probability for each instance. Our
experiments consist of five budget levels 500, 750, 1000, 1500 and 3000. We
also ran the experiments with the same parameters for FLRP-D for com-
parison purposes. All experiments are coded in GAMS (Brook et al., 2009)
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Table 3: Parameters
Parameter Uniform Distribution

Initial Demand (w) [100, 200]
Future Demand (λ) [50, 250]
Opening Cost (o) [200, 300]
Closing Cost (c) [50, 100]

Table 4: Future instances and scenario probabilities

Upper Limit on Scenarios
Number of Future Facilities (q) r = 0 r = 1 r = 2

0 1 - -
1 0.5 0.5 -
2 0.4 0.3 0.3

and solved by CPLEX. Percent difference of the objective function values are
calculated by subtracting average objective function values of FLRP-U from
FLRP-D and dividing by FLRP-U for all scenarios and budget values.
Figures 3(a), 3(b), and 3(c) illustrate initial weighted distance, expected
weighted distance, and the total weighted distance differences between FLRP-
U and FLRP-D when q = 0, q = 1, and q = 2, respectively. Initial weighted
distance of FLRP-U is always higher than the initial weighted distance of
FLRP-D for all cases. This is not surprising because initial weighted dis-
tance for FLRP-D is the optimal solution based on the initial weights. With
respect to the initial weights; the difference between FLRP-D and FLRP-U
becomes smaller for all scenarios, as we increase the budget. This gap also de-
creases when the upper bound for the number of future facilities decreases.
For the expected weighted distance, we again observe that FLRP-U pro-
duces better results in all instances. Related with the individual scenarios,
it performs better when we have a lower budget. Opposite to the initial
weighted distance values, the gap between the methods increases when the
upper bound for the future facilities increases. We observe a larger difference
between the results of FLRP-U and FLRP-D when q = 2, compared to q = 1
or q = 0. In FLRP-U, we let the initial weighted distance to increase slightly
in order to handle the demand changes and uncertain number of future facili-
ties. However, in FLRP-D, initial decisions are made without considering the
future uncertainties, planning that necessary relocations would be performed
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(a) q = 0 (b) q = 1

(c) q = 2

Figure 3: % Difference between FLRP-D and FLRP-U

after observing the demand change.
Figure 4 shows the difference of total weighted distance between FLRP-U
and FLRP-D for different budget values. We make three observations based
on these experiments. First, initial weighted distance for FLRP-D is always
lower than or equal to FLRP-U. This gap decreases when either the budget
is increased or the upper limit of the number of future facilities is decreased.
Second, expected future weighted distance for FLRP-U is lower than or equal
to FLRP-D. This gap increases when either we decrease the budget or in-
crease the upper limit of the number of future facilities. Third, the two
objectives explained above are contradicting. However, this contradiction
results in favoring FLRP-U. Since the difference of the two methods for ex-
pected future weighted distance and initial weighted distance is higher in
FLRP-D, FLRP-U yields better total weighted distance for the test problem
instances. This gap also follows a similar pattern with the expected future
weighted distance; increases when either the budget is decreased or the upper
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Figure 4: Total weighted distance difference between FLRP-D and FLRP-U wrt. future
scenarios for different budget values

limit of number of future facilities is increased.

5.3. Sensitivity Analysis for FLRP-U

In this section we present sensitivity analysis for FLRP-U based on differ-
ent budget values. This analysis will provide an insight about the trade-off
between the allocated budget for relocations and total weighted distance
traveled by customers to their closest facilities. As we discussed in Section
2, extra sources for the budget can be utilized in real life. Therefore, this
analysis will also help a decision maker to explore various budget options
considering the possibility of additional resources.
Sensitivity analysis was conducted on 20 randomly generated networks, each
one having 250 nodes. The same parameters in Tables 3 and 4 were used.
The budget for opening and closing facilities are set to be 500, 750, 1000,
1500, 3000 and 5000. Figure 5 shows a summary of the results. For q = 0,
the line is almost flat, which means that allocating extra budget for such sit-
uations does not provide much improvement. This shows that, when there is
no increase in the number of future facilities, the total of initial and expected
future weighted distance does not depend too much on the available budget
for relocations due to the fact that there is no uncertainty in the number of
future facilities. For q = 1 and q = 2, the impact of extra budget is more ev-
ident, especially from 500 to 750. The rest of the improvement converges to
a constant. This shows that, allocating extra budget for relocations beyond
3000 may not further improve the objective function value.
Overall, the increase in the budget from 500 to 750 provides significant de-
crease in the objective function value, especially for q > 0. Further increases
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Figure 5: Trade-off curves between the budget and total weighted distance for q values

up to 3000 seem to be also beneficial, however the slope of the lines are get-
ting smaller compared to the former. Overall, increasing budget seems to be
most beneficial for larger value of q.

5.4. Decomposition Algorithm for FLRP-U

In order to test the computational performance of the IP Decomposition
Algorithm, we generated 20 random networks of size 100, 250 and 500, re-
spectively. The same parameters in Table 3 were used. The instance q = 2
in Table 4 is considered since it is more complicated than the other two in-
stances. The budget for opening and closing facilities was set to 1200 for all
instances. The number of initial columns created for the master problem and
additional columns throughout the iterations are selected to be 10, 30, 50 for
network sizes 100, 250 and 500, respectively. This column size selection was
made in order to have feasible master problems. For each instance, the algo-
rithm is run for desired dual gap levels 1%, 2%, 3%, 4%, 5% and 10%. We
coded the algorithm in C++ and used CPLEX (IBM, 2009) to obtain the
LB and solved the MP . Experiment instances are also solved by an exact
solution method, which is the BIP formulation introduced in Section 3.1.2.
The exact method is formulated in GAMS (Brook et al., 2009) and solved by
CPLEX (IBM, 2009), and for each instance we set the relative termination
tolerance to the same desired dual gap levels.
Figures 6(a) and 6(b) illustrate the convergence of the algorithm for two in-
stances of network sizes 100 and 250. First, the lower bound is calculated
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(a) n = 100 (b) n = 250

Figure 6: Convergence of the algorithm

using Equation 4.1 once and it is fixed throughout the iterations. Then the
rest of algorithm attempts to minimize the upper bound by adding columns
to the MP in each iteration.
Table 5 shows the average actual dual gap for all network sizes and desired
dual gaps for both exact solution method and decomposition algorithm. The
average solution time in CPU seconds and percent time gain for each case
are also compared. The percent time gain is calculated by subtracting the
average solution time of exact method from the decomposition algorithm
and dividing by the average solution of decomposition algorithm. Standard
deviation of the actual dual gap of both methods for each network size is
plotted with respect to the desired dual gap level in Figure 7. This figure
shows that variability in the actual dual gap for both methods is less in the
decomposition algorithm for most of the instances.
As we can observe from Table 5, objective function values for both meth-
ods are within the desired dual gap which we used as a stopping criterion
for both the exact method and decomposition algorithm. However, there is
a substantial gain in its average CPU time of our decomposition algorithm
compared to the exact approach, up to 86.5 %. From Table 5 and Figure 7,
we can conclude that the average dual gap and standard deviation of both
methods increased when we increase the desired dual gap level. We have
also observed that the standard deviation for the decomposition algorithm is
usually smaller than the exact solution method.
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Table 5: Decomposition Algorithm and Exact Solution Method Comparison

Stopping Dual Gap (Average) Solution Time (Average)
Criterion Exact Decomp Exact Decomp Gain (%)

n=100

1% 0.17% 0.38% 13.08 3.97 69.63
2% 0.38% 1.20% 12.00 3.61 69.94
3% 0.59% 1.78% 11.45 3.33 70.91
4% 0.83% 2.30% 11.21 3.36 70.01
5% 0.92% 2.36% 10.66 3.27 69.28
10% 1.64% 2.76% 10.83 3.32 69.35

n=250

1% 0.18% 0.51% 468.04 117.53 74.89
2% 0.30% 1.10% 443.59 96.73 78.19
3% 0.56% 1.47% 414.83 95.62 76.95
4% 0.76% 1.50% 402.38 94.84 76.43
5% 0.81% 1.73% 402.08 95.16 76.33
10% 1.46% 1.78% 373.74 95.66 74.41

n=500

1% 0.14% 0.76% 10028.00 1378.50 86.25
2% 0.43% 1.11% 9049.90 1358.90 84.98
3% 0.43% 1.72% 9102.60 1356.90 85.09
4% 1.07% 1.64% 8583.20 1355.00 84.21
5% 1.92% 2.01% 7756.40 1356.30 82.51
10% 1.92% 2.32% 7503.54 1357.30 81.91

6. Conclusions

In this paper, we introduced the facility location problem that considers
future demand changes as well as uncertain number of future facilities which
we named FLRP-U. The objective is to minimize the sum of the current
weighted distance and the expected future distance traveled by customers to
their closest facilities without exceeding a given budget for opening and clos-
ing of facilities. As we discussed in Section 2, there are few approaches that
consider closing of facilities, which is necessary to handle demand changes.
Therefore, we presented a method that determines the initial locations and
future relocations of facilities based on the fact that number of future facili-
ties is not known exactly.
We presented an integer programming formulation of the problem and some
numerical results that compare the performance of our method against an
adapted version of another method found in literature, which was named
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(a) n = 100 (b) n = 250

(c) n = 500

Figure 7: Standard Deviation of δ for Exact Solution Method (E) and Decomposition
Algorithm (D) for network sizes n = 100, 250 and 500.

FLRP-D. Based on the average total weighted distance, FLRP-U outper-
formed FLRP-D in all scenarios, which shows that FLRP-U methodology is
a valuable contribution to solve such problems.
We conducted sensitivity analysis that shows the impact of budget increase
on total weighted distance. Those analysis can be utilized for making deci-
sions about whether finding extra sources to increase the available budget
for relocations is worthwile or not.
We introduced a decomposition algorithm for FLRP-U to ease the time to
solve the problem for large scale instances and high uncertainty. We then
presented numerical results that compare the objective function value and
solution time of our decomposition algorithm with an exact solution method,
concluding that our proposed method yields a significant time gain while sat-
isfying the desired dual gap level.
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