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In this paper, we consid
tions are performed by
ones in newly emerging
fore, different scenarios
a mixed integer progra
distance while making
problem structure and d
process. Numerical exp
solution method.

1. Introduction and literature review

Facility location problems have been widely studied by man
researchers on a variety of sectors. Examples include public facil
ties, supply chain facilities, healthcare facilities and humanitaria
relief facilities that are located to best serve communities. Thes
facilities are often intended to serve the communities for lon
durations, where we can expect demand changes or shifts in th
communities.

Suppose we already have a set of facilities in place and th
customer demand has changed over time. Because of thes
demand changes, existing facilities may no longer be able to pro
vide adequate service, which may yield to an intolerable increas
in total weighted distance traveled by the customers (Durukan
Sonmez and Lim, 2012). Therefore, we need to consider relocatin
some of the existing facilities to new locations that would bette
serve the customers. In the cases where we have an accurate an
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reliable forecast for the demand, those values can be utilized to
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make the optimal relocation decision. However, there could b
many instances where obtaining exact figures of the new deman
can be challenging because of the difficulties in predicting mobilit
as well as in and out migration (Gregg et al., 1988). Note tha
demand at a point depends on many factors such as communit
growth and economic vitality (Serra and Marianov, 1998), or th
demand itself varies within different time periods. For suc
instances, it is more reasonable to treat demand as an uncertai
parameter.
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elocating facilities, where we have demand changes in the network. Reloca
ing some of the existing facilities from low demand areas and opening ne
as. However, the actual changes of demand are not known in advance. There
h known probabilities are used to capture such demand changes. We develo

ing model for facility relocation that minimizes the expected weighte
that relative regret for each scenario is no greater than c. We analyzed th

loped a Lagrangian Decomposition Algorithm (LDA) to expedite the solutio
ents are carried out to show the performance of LDA against the exa

� 2013 Elsevier B.V. All rights reserve

Demand uncertainty is usually modeled in two different way
(Owen and S Daskin, 1998). The first approach assumes possibl
values for the demand with probabilities associated with those va
ues. The second approach considers upper and lower bound value
for the demand. In both cases, the demand can be represented wit
various scenarios. Those type of problems are usually handle
using robust optimization approaches, i.e., minimizing the max
mum regret or worst case objective function (Snyder, 2006). Bu
a drawback of robust optimization is that worst-case scenari
dominates the outcome, even though it may be less likely to occu
in reality. This could be a good approach for location of facilitie
that deals with emergency management situations such as nuclea
reactors or ambulance stations. For other types of public or privat
facilities, decisions made by considering the worst case scenari
may be too pessimistic because it is possible that few extrem
scenarios, which are less likely to occur, could heavily influenc
the results of min–max based robust opimizaion. Such decision
may lead to unnecessarily higher expected weighted distances. I
order to overcome this issue of the traditional robust optimizatio
techniques, different approaches were suggested in the literatur
Daskin et al. (1998) proposed an a-reliable minimax regret mode
for a p-median problem. They minimized the maximum regret o
the total weighted distance over a set of scenarios whose tota
probability is at least a. Chen et al. (2006) introduced an a-reliabl
mean-excess regret model in which the expected regret wa
minimized with respect to the scenarios whose total probabilit
of occurrence is no more than (1 � a). Snyder and Daskin (2006
proposed a model that minimizes the expected cost while havin
a relative regret in each scenario no more than a desired amoun
This approach provides a balance and trade-off between robus
ness and expected travel distance/cost.
n problem. European Journal of Operational Research (2013), http://
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Many papers deal with location of facilities under demand
certainty (Mirchandani and Odoni, 1979; Weaver and Church,
83; Serra and Marianov, 1998; Conde, 2007) whereas only a

considered relocations for such environments. Carson and
tta (1990) define a stochastic network in which demand at each
de varies throughout the day. Due to this variation, one static
ation for the facility may increase the system-wide response
e. In order to minimize the average response time, they

nsidered relocation of the facility throughout the day. In their
oblem, facility relocation is perceived as an option to react to
e changes in demand. Although, relocation for each scenario
n be acceptable for mobile facilities such as ambulances, for

her type of facilities such as libraries, schools, bank branches or 175176
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210
Ms, it is not reasonable to consider relocating facilities for every
enario. Furthermore, they did not consider costs for relocation in
e model.
For non-mobile facilities, the approach proposed by Gregg et al.

988) could be utilized in order to find facility relocations. Assum-
g a probability distribution for the demand, they model a public
ility system as a network with the objective of minimizing the

m of operating cost for regular and over time, travel distance,
erage cost and underage cost. In their approach, they extensively
ed sensitivity analysis such as finding the weights in the objec-
e function, and opening and closing different combinations of
ilities to observe the impact of these decisions. They run the

odel with all facilities open and obtain the utilization percent
r each facility. Based on the utilization, they decide to open
d close some of the facilities then rerun the model, and repeat
is procedure until a satisfactory solution was found. A major
awback is that the facility opening and closing decisions are
ogenous. A better approach could determine which facilities to
en and close within an optimization model.
Therefore, the goal of this paper is to provide a new solution ap-

oach for the facility relocation problem under demand uncer-
inty. We develop a mathematical model and a solution
orithm to find a relocation decision that performs well under
scenarios rather than finding different alternatives for each sce-

rio. The optimization model and solution algorithm determine
ich facilities to open and close while balancing the expected

d worst case performance of the decisions. This is achieved by
e objective of minimizing the expected weighted distance and
e constraint on restricting the relative regret of each scenario
t to be greater than c. The rest of this paper is organized as fol-

s. Section 2 describes the methodology, where we develop the
athematical model. In Section 3, we discuss the solution algo-
hm that we propose to solve the problem. In Section 4, we intro-
ce the numerical results to show effectiveness of our model and
e proposed algorithm. We conclude this paper in Section 5 with
ture research directions.

Methodology
211vio 212

P

X
j2V
We present a formulation for c-robust facility relocation
oblem, c-RFRP in short. Our goal is to minimize the expected
ighted distance while making sure that relative regret for each

enario is less than c. The relative regret associated with a sce-
rio is calculated as the difference between the total weighted
stance corresponding to a location decision and the optimal total
ighted distance under that scenario divided by the optimal total
ighted distance of the scenario. An optimal weighted distance

r each scenario is obtained by solving the deterministic facility
location problem introduced by Wang et al. (2003), which will

referred to as dFRP in the rest of the paper. The following
tations and input parameters are used to formulate dFRP and

RFRP.

ease cite this article in press as: Lim, G.J., Sonmez, A.D. c-Robust facility reloca
.doi.org/10.1016/j.ejor.2013.02.033
V1 Set of existing facilities
V2 Set of potential facilities
V Set of all locations, V ¼ fV1 [V2g
vi Location i 2 V in the network
S Set of all demand scenarios
wik Demand of customer at v i 2 V at scenario k 2 S

dij Distance between customer at v i 2 V and facility at
v j 2 V

p Number of initial facilities
q Number of final facilities
oj Opening cost of facility at v j 2 V2

cj Closing cost of facility at v j 2 V1

b Available budget for relocations
bk Probability of scenario k 2 S

f�k Optimal objective function value of dFRP for scenario
k 2 S

c Maximum value of relative regret permitted for each
scenario

. Problem formulation for dFRP

We have two sets of decision variables for dFRP.

¼ 1; if facility at v j; j 2 V is open
0; otherwise:

�

k¼
1; if demand at v i; i2V is assigned to facility at v j; j2V;

in scenario k2S
0; otherwise:

8<
:

en the problem formulation for dFRP for a given scenario k is

: min fk ¼
X
i2V

X
i2V

wikdijxijk ð2:1Þ

s:t:
X
j2V1

cjð1� yjÞþ
X
j2V2

ojyj 6 b; ð2:2ÞX
j2V

yj ¼ q; ð2:3ÞX
j2V

xijk ¼ 1; 8i 2 V; ð2:4Þ

xijk 6 yj; 8i; j 2 V; ð2:5Þ
yj; xijk 2 f0;1g; 8i; j 2 V: ð2:6Þ

The objective of the formulation is to minimize the total
ighted distance. Constraint (2.2) is the budget constraint for
ening and closing facilities. Constraint (2.3) makes sure that ex-
tly q facilities are located. Constraint (2.4) states that demand at
ch location vi is assigned to a facility. Constraint (2.5) makes sure
at demand at location i can be satisfied by facility at vj only if the
ility is open.

. Problem formulation for c-RFRP

Using the same decision variables (yj and xijk) defined in the pre-
us section, c-RFRP is formulated as follows.

2 : min
X
k2S

X
i2V

X
j2V

bkwikdijxijk ð2:7Þ

s:t:
X
i2V

X
j2V

wikdijxijk 6 ð1þ cÞf�k; 8k 2 S ð2:8Þ

1

cjð1� yjÞþ
X
j2V2

ojyj 6 b ð2:9Þ
X
j2V

yj ¼ q ð2:10Þ
X
j2V

xijk ¼ 1; 8i 2 V; 8k 2 S ð2:11Þ

xijk 6 yj; 8i; j 2 V; 8k 2 S ð2:12Þ

yj; xijk 2 f0;1g; 8i; j 2 V; 8k 2 S ð2:13Þ 214214

tion problem. European Journal of Operational Research (2013), http://

http://dx.doi.org/10.1016/j.ejor.2013.02.033
http://dx.doi.org/10.1016/j.ejor.2013.02.033
Original text:
Inserted Text
Formulation 

Original text:
Inserted Text
Formulation 



215 d
216 t
217 e
218

219 e
220 e
221 f

222 s
223 e
224 e.
225 o
226

227

228 o
229 r
230 ,
231 s
232 t
233 ,
234 y
235 y
236 -
237 n
238 r
239 s.
240 g
241

242 t
243 t
244 f
245 ,
246
247

Þ

Þ

Þ

Þ

Þ

Þ

Þ

Þ249249

250

251

252

253

254

255

256

257

258

259

260r
261

V

ijk

¼

x 6 y

263263

264
265

267267

268-
269
270

Þ
272272

273e
274
275

277277

278e
279t
280-
281
282

284284

285d
286
287

289289

290-
291

292e
293s

G.J. Lim, A.D. Sonmez / European Journal of Operational Research xxx (2013) xxx–xxx 3

EOR 11538 No. of Pages 9, Model 5G

5 March 2013
The objective of the formulation is to minimize the expecte
weighted distance. Constraint (2.8) makes sure that relative regre
for each scenario is no more than c. The remaining constraints ar
similar to the ones defined in P1.

It is proven that dFRP is NP-hard (Wang et al., 2003). Since w
need to solve a dFRP for each scenario in c-RFRP, it is easy to se
that our problem is also NP-hard. Note that the problem size o
c-RFRP rapidly grows when we increase the number of facilitie
as well as future scenarios. We have empirically verified that th
computational time increases with the growth of the problem siz
Therefore, we propose Lagrangian Decomposition Algorithm t
solve our problem in a timely manner.

3. Lagrangian Decomposition Algorithm for c-RFRP

Lagrangian Decomposition Algorithm (LDA), which is als
known as Variable Splitting Algorithm provides equal or bette
lower bounds than Lagrangian relaxation (Guignard and Kim
1984; Barcelo et al., 1991; Snyder and Daskin, 2006). LDA allow
separation of variables by introducing a new set of variables tha
are made to be equal to the existing variables in the model. Then
two sub-problems are obtained by relaxing this equalit
constraint. In our application, we utilize Lagrangian relaxation b
adding the equality constraint and one of the complicated con
straints to the objective function by multiplying with Lagrangia
coefficients. Then, we utilize this solution to generate an uppe
bound and use a subgradient algorithm to optimize the multiplier
Details of all these procedures are explained in the followin
sections.

In order to apply LDA, we modify our model by adding a new se
of binary variables sijk that should be equal to xijk by constrain
(3.7) in the following formulation, P3. The objective functions o
P2 and P3 are made to be equal by using the parameter r
0 6 r 6 1.

P3 : minr
X
i2V

X
j2V

X
k2S

bkwikdijxijkþð1�rÞ
X
i2V

X
j2V

X
k2S

bkwikdijsijk ð3:1

s:t:
X
i2V

X
j2V

wikdijxijk6 ð1þcÞf�k; 8k2S ð3:2

X
j2V1

cjð1�yjÞþ
X
j2V2

ojyj6 b ð3:3

X
j2V

yj¼ q ð3:4

X
j2V

xijk¼1; 8i2V; 8k2S ð3:5

xijk6 yj; 8i; j2V; 8k2S ð3:6

xijk¼ sijk; 8i; j2V; 8k2S ð3:7

yj;xijk;sijk 2f0;1g; 8i; j2V; 8k2S ð3:8
-
g
-

294-
295e
296-
297k-

298
3.1. Lower bound generation

We obtain a lower bound for the c-RFRP, by adding the con
straints (3.3) and (3.7) to the objective function by multiplyin
with Lagrangian coefficients u and l, respectively. The optimal solu

tion for the relaxed problem provides a lower bound for P3. More-
over, relaxing those constraints allows to decompose P3 into two

n
f
-

299),
300

301s
302r
303t
304d
subproblems. Solving these subproblems separately is easier tha
solving P3 itself and the sum of the objective function values o
the subproblems provides a lower bound for P3. The two subprob
lems are demonstrated in the following formulations:
Please cite this article in press as: Lim, G.J., Sonmez, A.D. c-Robust facility rel
dx.doi.org/10.1016/j.ejor.2013.02.033
SubP
ocation pro
oblem 1: " #

min

XX
X
rbkwikdijkxijkþu

X
cjð1�yjÞþ

X
ojyj�b �

XXX
lijkx
i2V j2X
 k2S j2V1 j2V2 i2V j2V k2S
s:t: yj
 q

j2V
j; 8i; j2V; 8k2S
ijk

yj;xijk
 2f0;1g; 8i; j2V; 8k2S:
SubProblem 2:

min
X
i2V

X
j2V

X
k2S
ð1� rÞbkwikdijksijk þ

X
i2V

X
j2V

X
k2S

lijksijk

s:t:
X
i2V

X
j2V

wikdijsijk 6ð1þ cÞf�k; 8k 2 S

X
j2V

sijk ¼1; 8i 2 V; 8k 2 S

sijk 2f0;1g; 8i; j 2 V; 8k 2 S:

In order to solve the first subproblem, we reorganize its objec
tive function as follows:

min
X
i2V

X
j2V

X
k2S
ðrbkwikdijk � lijkÞxijk �

X
j2V1

ucjyj þ
X
j2V2

uojyj

þ
X
j2V1

ucj � bu ð3:9

For each vj, the contribution of opening a facility at vj to th
objective function can be denoted as

qjðu; lÞ ¼
P

k2S
P

j2V minf0; ðrbkwikdijk � lijkÞg � ucj; if j 2 V1;P
k2S
P

j2V minf0; ðrbkwikdijk � lijkÞg þ uoj; if j 2 V2

(

Since the last two terms of Eq. (3.9) are constant, we rank th
qj’s in ascending order and we set yj = 1 for each of the q smalles
qj to find the optimal solution for the first subproblem. Conse
quently, solution for xijk can be obtained as follows:

xijk ¼
yj; if rbkwikdijk � lijk < 0;
0; otherwise

�

The second subproblem can be divided into jSj instances, an
for each instance k 2 S:

min
X
i2V

X
j2V

X
k2S
ðð1� rÞbkwikdijk þ lijkÞsijk

s:t:
X
i2V

X
j2V

wikdijsijk 6ð1þ cÞf�kX
j2V

sijk ¼1; 8i 2 V

sijk 2f0;1g; 8i; j 2 V:

Each instance is similar to 0–1 Multiple Choice Knapsack Prob
lem (MCKP). In 0–1 MCKP, we need to select exactly one item from
multiple disjoint subsets. The goal is to maximize (minimize) th
objective function while satisfying the 6(P) knapsack constraint
(Martello and Toth, 1990). In the second subproblem of our decom
position, the assignment of facilities to each customer i 2 Vcan b
considered as a subset. Objective function coefficient and con
straint coefficient for each facility j in each subset i is ((1 � r)bkwi

dijk + lijk) and wikdij, respectively.
We know that 0–1 MCKP is NP-hard (Martello and Toth, 1990

and using exact solution techniques for the second subproblem
would be too time consuming, especially for larger instances. A
our goal in solving the second subproblem is to obtain a lowe
bound for the original problem, the second subproblem does no
need to be solved optimally to obtain that lower bound. We use
blem. European Journal of Operational Research (2013), http://
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412
ations are performed to apply their solution technique because
e algorithm requires nonnegative objective function coefficients
d a greater than or equal to (P) sign in the knapsack constraint
nyder, 2003).

: min
Xm

i¼1

X
j2Ni

cijxij

s:t:
Xm

i¼1

X
j2Ni

aijxij 6b

X
j2Ni

xij ¼1; k ¼ 1; . . . ;m

xij 2f0;1g; j 2 Ni; i ¼ 1; . . . ;m

ppose P4 is a simplified version of each instance k of SubProblem
where cij = ((1 � r)bkwikdijk + lijk) and aij = wikdij for 8k 2 S. Since
e algorithm requires (P) constraint, we first calculate

maxfb=m;maxj2Ni ;i¼1;...;maijg. Then, we set aij ¼ �a� aij and
m�a� b. In addition, negative objective function values may

cur while applying the subgradient algorithm (Section 3.3). There-
e, in order to ensure nonnegative coefficients we make a simple
justment to coefficients, calculate �c ¼ jminf0;minj2Ni ;i¼1;...;mcijgj
d add �c to each cij. After solving the problem, we subtract m�c from
e objective function value.

. Upper bound generation

An upper bound can be obtained from the solution of the first
bproblem. We set yj = 1 for the facilities that are decided to
main open in the optimal solution of the first subproblem, then

assign each customer to its closest facility. We first check if
e solution is feasible with respect to the budget constraint. If it
feasible, we calculate the relative regret for each scenario and
eck if all regrets are smaller than or equal to c. If so, we can
y that the solution is feasible with respect to the robustness
nstraint and it provides an upper bound for the original problem.
If the solution is not feasible with respect to the robustness

nstraint, we apply a local neighborhood search (LNS) to obtain
ocal optimal solution. In LNS, we attempt to swap each facility
th one of its closest f vertices. We first check if the swap satisfies
e budget constraint. Then, we check if the solution after the swap
tisfies the c-robustness constraint by calculating the new
lative regrets. If any of the swaps satisfy both constraints, the
lution after the swap can be used as an upper bound for the
iginal problem.
An initial and hypothetical upper bound for the algorithm can
obtained using the following proposition:
oposition 1.
P

k2Sbkð1þ cÞf�k provides an upper bound for
RFRP.

oof. Let f�k be the optimal objective function value for each sce-
rio and based on the problem definition, each scenario can have
elative regret of at most c. Therefore, the total travel distance in
y scenario of c-RFRP can be at most ð1þ cÞf�k and the objective
nction value of c-RFRP is bounded above by

P
k2Sbkð1þ cÞf�k. h

. Subgradient algorithm for lagrangian multipliers

In order to solve the decomposed problem, we use a subgradi-
t algorithm to calculate the Lagrangian multipliers. The follow-
g notations are used for the procedure.

ease cite this article in press as: Lim, G.J., Sonmez, A.D. c-Robust facility reloca
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�z� Best upper bound
dt Dual gap in each iteration
g, hijk Subgradients of the Lagrangian multiplier u and lijk
p1, p2 Step size coefficients for the Lagrangian multiplier u

and lijk
l1, l2 Step sizes for the Lagrangian multiplier u and lijk
t Iteration index

e algorithm terminates when either one of the following two
pping criteria is met:

dual gap (d) is less than equal to a pre-determined threshold
value, or
when the maximum number of iterations (tmax) has been
reached.

The initial value of the Lagrangian multiplier u is set to 0. For
e multiplier lijk, we determine the closest f vertices for each cus-
mer i 2 V and for each scenario k 2 S, assign the average de-
and of all customers multiplied by a closeness coefficient.

Step 0: Initialize the parameters
Set t = 0, z�l ¼ �1, �z� ¼

P
k2Sbkð1þ cÞf�k, and d0 =1,

Let u0 = 0, and

l0
ijk ¼

�wik
fþ2�q

fþ1 ; if facility at v j is the q th closest facility to customer i;

16q6 f ;
0; otherwise

8><
>:

while (dt > d)k(t 6 tmax)
{

Step 1: Solve subProblems 1 and 2 and obtain a lower

bound, zt, by adding the objective function values of both
problems.

If zt P z⁄, set z⁄ = zt.
Step 2:

if yj satisfies the budget constraint then
assign each customer to the closest facility
if the current solution satisfies the robustness constraint

then
Calculate �zt

else
Perform LNS to find a feasible solution and calculate the�zt

end if
if �zt

6 �z�, then set �z� ¼ �zt

else
Go to Step 1
413end if
414Step 3: Calculate the dual gap: dt ¼ ð�z� � z�Þ=z�

415Step 4: Calculate g, h and step sizes and update the
416Lagrangian multipliers using the following equations: 417
418

g ¼
X
j2V1

cjð1� yjÞ þ
X
j2V1

ojyj � b

hijk ¼ �xijk þ sijk

lt
1 ¼ p1ð�z� � z�Þ=g2

lt
2 ¼ p2ð�z� � z�Þ

X
i2V

X
j2V

X
k2S

h2
ijk

,

utþ1 ¼maxf0;ut þ glt
1g

ltþ1
ijk ¼ lt

ijk þ hijklt
2 420420

421}
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422

424

425

427

428 4. Numerical results

429 In this section, we present our numerical results to test the c-
430 RFRP model discussed in sections Sections 2 and 3. All numerical
431 results presented in this section were obtained on a Pentium 4
432 Xeon 3.6 gigahertz workstation with 4 gigabytes RAM.

433 4.1. Experiment setup

434 The c-RFRP was tested on 25 randomly generated networks
435 with 100 and 250 nodes in each network for the comparison of ex-
436 act method and proposed LDA. For large scale problems, the LDA
437 .
438

439 t
440 0,
441 s
442 f
443 x
444 t
445 ll
446

447

448 h
449 -
450 t-
451 h
452

453

454
455

457457

458

459

460

461

462

463

464

465

466

467

468

469
470
472472

473

474

475

4762, respectively. Both coefficients were decreased by 10% at every
47730th unimproved iteration.

4784.2. Experiment results

4794.2.1. Exact Solution Approach vs. Lagrangian Decomposition
480Algorithm
481In this section we present the results of our experiments that
482compare the exact solution approach and LDA. The exact solution
483approach, which is the binary integer programming model, was
484coded in GAMS (Brook et al., 2009) and solved by CPLEX 12.1.
485The LDA was coded in C++.
486For each instance, we first solved the dFRP corresponding to
487each scenario k 2 S, to acquire input parameter fk, 8k 2 S. Then,
488we solved each instance with both the exact method and the
489LDA, and recorded the objective function values and the solution
490time in CPU seconds. Both methods were stopped if the objective
491function value was within a given dual gap, i.e. 3% and 5% in our
492experiments.
493Fig. 1a and b illustrate the convergence of the LDA for two in-
494stances for n = 100 and n = 250, respectively. In LDA, the lower
495bound increases rapidly in the initial iterations and the increase
496becomes slower after some point. On the other hand, the upper
497e
498d
499

500-
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was tested on 25 randomly generated networks with n = 500
Opening and closing costs were randomly generated from uniform
distributions over [200,300] and [50,100], respectively. The budge
scenarios for opening and closing facilities were set to 1000, 150
and 3000. The number of initial facilities was set to 4 and location
for these facilities were randomly determined. The total number o
final facilities, q, was set to 8. In this setup (p = 4, q = 8, ma
{oj} = 100, and max {cj} = 300), assigning 3000 to b is equivalen
to a budget constraint without the limit. If we wish to close a
existing 4 facilities and open brand new 8 facilities, the maximum
required budget (2800) would be still less than 3000.

Different demand scenarios were generated using an approac
similar to the one discussed in Daskin et al. (1998). In each sce
nario, we created more intense demand in some areas of the ne
work. For this purpose, we define some locations for eac

scenario which are named attraction points. Locations that are clo-
ser to an attraction point have a higher demand than the rest. De-
mand of each vi in a scenario k is calculated using Eq. (4.1).

wik ¼ w0
i þWtotal

1=dikP
j2V1=dij

 !
: ð4:1Þ

The initial demand for vertices, w0
i , which are used as an input

for Eq. (4.1) are generated randomly from a uniform distribution
over [100,200]. Parameter Wtotal is the total of w0

i ’s in the network,
i.e. Wtotal ¼

P
i2Vw0

i . The parameter dik is the distance between vi

and the attraction point defined for scenario k.
Attraction points are located in the following regions of the net-

work: southeast, northeast, southwest, northwest, center, south,
north, west, and east. For example, in the first scenario we have
more intense demand in the southeastern part of the network
and in the eighth scenario, we have more intense demand in the
western part of the network. The probabilities of scenarios for
S; jSj ¼ 9 are as follows:

b ¼ ½0:01;0:04;0:15;0:02; 0:34;0:14;0:09; 0:16;0:05�:

For LDA, values of some parameters were determined after
trial-and-error. The value of r was set to 0.2. Initial values for
Lagrangian multiplier coefficients p1 and p2 were set to 1.5 and

Fig. 1. Converg

Please cite this article in press as: Lim, G.J., Sonmez, A.D. c-Robust facility r
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bound slowly decreases over the iterations. In both instances, thes
figures show that the dual gap eventually converged to 1.4% an
0.9%, respectively.

The c-RFRP has constraints on maximum allowable relative re

501gret (c) for each scenario and budget (b) for relocations. Due to
502these limitations on c and b, some instances may not have feasible
503solutions (Snyder, 2006). In Lagrangian decomposition algorithm, if
504a lower bound calculated at any iteration has a value greater then
505the theoretical upper bound that was found using Proposition 1,
506then the problem is identified as infeasible. In such instances, no
507feasible solution can be obtained or either c or b values should
508be increased to obtain feasible solutions. Table 1 shows the num-
509ber of feasible instances out of 25 instances we created for
510n = 100 and n = 250 for b = 1000, 1500 and 3000 as well as
511c = 0.1, 0.15, 0.2 and 0.25.
512Tables 2 and 3 show the average actual dual gap and desired
513dual gaps for both the exact solution method and LDA for n = 100
514and 250, respectively. The average solution time and percent time
515gain of LDA over the exact method for each case are also compared.
516The percent time gain is calculated by subtracting the average
517solution time of the LDA from the exact method and dividing it
518by the solution time of the exact method.
519As we can observe from Tables 2 and 3, objective function val-
520ues for both methods are within the desired dual gap. Solution
521time gain in its average CPU time of LDA over the exact approach
522for n = 100 ranges from 15% to 94%. A substantial time gain, more
523than 84% is observed for all cases with n = 250.

ence of the LDA.
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524 4.2.2. Large scale experiments
525 In this section, we present the numerical results for larger scale
526 problems. As we mentioned in the experiment setup, these exper-
527 iments include 25 networks each having 500 nodes. We solved
528 each instance using both methods. We stopped the algorithms
529 after 1 hour. The exact method could not find an integer feasible
530 solution at the end of an hour for any of the instances. In fact, no
531 integer feasible solutions were found for several hours of run.
532 Therefore, we could not make a comparison between two methods
533 for large scale problems. We report the average dual gap obtained
534 using LDA in Table 4.
535 Since some of the instances were infeasible, the numbers in
536 pa
537 to
538 in

539bu
540at
541sc

Tab
Co

Gain

44
38
46
78

79
92
91
94

20
45
70
74

Tab
Co

ain (

3
3
6
9

1
9
5
6

9
5
7
3

Table 1
Number of feasible instances.

Network size Budget Gamma

0.25 0.2 0.15 0.1

100 1000 25 19 8 1
1500 25 21 15 3
3000 25 25 21 5

250 1000 21 21 20 6
1500 24 24 24 15
3000 25 24 24 17

Table 4
Dual gap using LDA for n = 500.

Gamma Budget

1000 1500 3000

0.25 2.9% (25) 2.7% (25) 2.3% (25)
0.2 2.9% (24) 2.8% (24) 2.3% (25)
0.15 2.9% (21) 2.6% (22) 2.1% (24)
0.1 3.0% (11) 2.9% (12) 2.5% (16)

Fig. 2. Expected weighted distance vs. robustness w.r.t. budget.
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Pl
dx
rentheses indicate the number of feasible instances that are used
calculate the average value. As we can see from the numbers,

feasibility increases when we have smaller c values and less

le 2
mparison of LDA and exact solution method for n = 100.

Budget c d = 5%

Dual gap Solution time

Exact (%) LD (%) Exact LD

1000 0.25 1.6 4.4 75 42
0.2 2.2 4.3 77 48
0.15 2.0 4.1 114 62
0.1 0.5 2.4 147 32

1500 0.25 2.2 4.3 261 55
0.2 2.8 4.1 814 65
0.15 1.8 3.9 871 77
0.1 1.2 4.2 1676 104

3000 0.25 0.3 4.2 59 47
0.2 0.9 3.7 108 59
0.15 1.0 4.0 205 62
0.1 0.4 4.1 229 59

le 3
mparison of LDA and Exact Solution Method for n = 250.

Budget c d = 5%

Dual Gap Solution Time

Exact (%) LD (%) Exact LD G

1000 0.25 1.1 4.6 3127 229 9
0.2 1.1 4.6 3582 241 9
0.15 1.1 4.5 7639 282 9
0.1 0.9 4.6 30602 279 9

1500 0.25 1.2 4.1 3362 296 9
0.2 0.9 3.9 2977 316 8
0.15 1.2 3.9 6825 345 9
0.1 0.9 4.3 3147 444 8

3000 0.25 0.1 3.1 3353 354 8
0.2 0.3 3.3 6789 358 9
0.15 0.1 3.2 3082 407 8
0.1 0.4 3.2 6250 417 9
ease cite this article in press as: Lim, G.J., Sonmez, A.D. c-Robust facility reloca
.doi.org/10.1016/j.ejor.2013.02.033
dget available for relocations. Table 4 shows that LDA can gener-
e good quality solutions within the given time limit for large
ale problems.
d = 3%

Dual gap Solution time

(%) Exact (%) LD (%) Exact LD Gain (%)

0.9 2.7 103 55 47
1.7 2.7 87 66 24
1.7 2.6 117 71 39
0.5 2.4 147 38 74

1.6 2.7 277 65 77
2.0 2.5 862 87 90
1.6 2.3 930 102 90
1.2 2.4 1677 118 93

0.2 2.5 60 51 15
0.6 2.5 109 64 41
1.0 2.5 213 68 68
0.4 2.4 229 63 72

d = 3%

Dual Gap Solution Time

%) Exact (%) LD (%) Exact LD Gain (%)

0.9 2.8 3420 301 91
0.9 2.8 4034 320 92
1.0 2.8 8329 403 95
0.9 2.9 30602 470 98

0.8 2.5 3709 340 91
0.8 2.5 3549 349 90
1.0 2.5 7040 418 94
0.7 2.6 3322 547 84

0.1 2.0 3353 365 89
0.3 2.2 6789 371 95
0.1 2.2 3082 428 86
0.4 2.2 6250 431 93
tion problem. European Journal of Operational Research (2013), http://
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4.2.3. Objective function value vs. c and budget values
In c-RFRP problem, both the maximum relative regret permit-

ted for each scenario, which is c, and the available budget for relo-
cations is used as a constraint in the formulation where the
objective is to minimize the expected weighted travel distance
from each demand node to its closest facility. Therefore, any in-
crease in those parameters is expected to decrease the objective
function value. On the other hand, any decrease in those parame-
ters may increase the objective function value or yield infeasible
solution space.

In this section, we analyze the trade off between the objective
function value and the parameters c and budget values. The
parameter values used for these experiments are n = 250,
c = 0.15, 0.2, 0.25, 0.5 and budget = 1000, 1500, 3000.

Fig. 2 shows the change in the expected weighted distance with
respect to the c values for each budget level. Average objective
function values of 20 feasible instances were calculated. In Fig. 2,
we can observe a decreasing pattern in the expected weighted dis-
tance when we increase the available budget as anticipated. This is
because a smaller budget allows less relocation opportunities and
when we have limited relocation opportunities the travel distance
from each customer to their closest facility may increase.

We can also observe the decrease in the expected weighted dis-
tance when we increase the c value. The effect of c on the objective
function value for each budget level can be observed better in
Fig. 3. All three figures show that the objective function value de-
creases when we increase the value of c as expected. Even though
higher c values may lead to less robustness for some scenarios,
they allow the model to consider more location alternatives and
this helps to decrease the total travel distance. This decrease be-
comes more apparent for higher budget levels because a higher
budget gives more flexibility for relocations, which allows one to
find solutions with lower travel distances.

These figures help us to determine the trade-off between the
objective function value and the c value as well as the different
budget levels. We can observe that, the more available budget
we have or the less robustness we seek, the smaller our expected
weighted distance will be. On the other hand, budget has an impact
on the trade-off between the objective function value and the c va-
lue. When there is a small amount of available budget, the c value
does not have too much effect on the objective function value be-

Fig. 3. Expected weighte
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583cause of limited relocation opportunities, i.e. an optimal solution
584for c = 0.15 may be the only feasible solution for c = 0.2 or 0.25.
585When there is an ample amount of budget, the objective function
586value decreases as the c value increases because there are many
587relocation alternatives.

5885. Summary and future work

589In this paper we introduced the facility relocation problem un-
590der uncertainty that considers uncertain demand changes. The
591objective is to minimize the expected weighted distance while
592making sure that relative regret for each scenario is no more than
593c. As we discussed in Section 1, there are only few approaches that
594consider relocation of facilities, which is necessary to handle de-
595mand changes. Therefore, we presented a method that determines
596optimal relocations of facilities with respect to c-robustness under
597uncertain demand changes.
598We developed an integer programming formulation of the prob-
599lem and analyzed its properties. Proving that the problem is NP-
600hard, and observing the long computational time especially for lar-
601ger instances, we developed a Lagrangian Decomposition Algo-
602rithm (LDA) to expedite the solution process. We then presented
603numerical results that compare the solution time and quality of
604LDA with the exact solution method. Our experiments showed
605that, LDA provides a significant time gain, while satisfying the de-
606sired dual gap value. LDA is the clear winner if the problem size in-
607creased because for larger scale problems, the exact method could
608not generate any integer feasible solution for hours of run.
609We conducted an analysis that shows the impact of budget and
610c values on the expected weighted traveling distance. The objective
611function values decrease when we have more available budget for
612facility relocations. When we decrease the c value meaning that
613the less robustness we desire, the expected weighted distance de-
614creases. Therefore, this analysis help us to determine the trade-off
615between the expected traveling distance from customers to their
616closest facilities and robustness for various budget levels.
617In the c-RFRP problem, we did not consider any capacity
618limitations for the facilities. As a future work, this problem can
619be extended to a capacitated c-RFRP to better reflect the reality.
620Capacity limitations will contribute to the infeasibility of the

d distance vs. Robustness.
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621 problems caused by robustness and budget constraint. Therefore,
622 infeasibility issues should further be investigated and solution
623 algorithms should be developed.
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